

LIBRARY
UNIVERSITY OF CALIFORNIA
DAVIS

STATE OF CALIFORNIA DEPARTMENT OF WATER RESOURCES

DEPARTMEN

COPY 2

BULLETIN NO. 91-1

DATA ON WELLS
IN THE
WEST PART OF THE
MIDDLE MOJAVE VALLEY AREA,
SAN BERNARDINO COUNTY, CALIFORNIA

PREPARED BY

UNITED STATES DEPARTMENT OF INTERIOR
GEOLOGICAL SURVEY

1: 1= 0

FEDERAL-STATE
COOPERATIVE GROUND WATER INVESTIGATIONS

JUNE 1960

STATE OF CALIFORNIA DEPARTMENT OF WATER RESOURCES

BULLETIN NO. 91-1

DATA ON WELLS IN THE WEST PART OF THE MIDDLE MOJAVE VALLEY AREA, SAN BERNARDINO COUNTY, CALIFORNIA

PREPARED BY

UNITED STATES DEPARTMENT OF INTERIOR
GEOLOGICAL SURVEY

FEDERAL-STATE
COOPERATIVE GROUND WATER INVESTIGATIONS

JUNE 1960

LIBRARY
UNIVERSITY OF CALIFORNIA
DAVIS

This report is one of a series of open file reports prepared by the United States Department of Interior Geological Survey, Ground Water Branch, which present basic data on wells obtained from reconnaissance surveys of desert areas. These investigations are conducted by the Geological Survey under a cooperative agreement whereby funds are furnished equally by the United States and the State of California. The reports in this Bulletin No. 91 series are being published by the Department of Water Resources in order to make sufficient copies available for use of all interested agencies and the public at large.

Water Resources Division Ground Water Branch 2929 Fulton Avenue Sacramento 21, California

May 18, 1960

Mr. Harvey O. Banks, Director California Department of Water Resources P. O. Box 388 Sacramento 2, California

Dear Mr. Banks:

We have the pleasure to transmit herewith, for publication by the Department of Water Resources, U. S. Geological Survey report, "Data on Wells in the West Part of the Middle Mojave Valley Area, San Bernardino County, California," by R. W. Page, W. R. Moyle, Jr., and L. C. Dutcher. This investigation was conducted and the report prepared in accordance with the cooperative agreement between the State of California and the Geological Survey.

This report, one of a series for the Mojave Desert region prepared by the Long Beach subdistrict office, tabulates all available data on water wells in the west part of the Middle Mojave Valley area and shows reconnaissance geology with special reference to the wateryielding deposits.

Sincerely yours,

Harry D. Wilson, Jr. District Engineer

CONTENTS

Medituritin dan propriate displace	Page
Purpose and scope of the work and report	- 3
Location and general features of the area	· - 5
Previous work and acknowledgments	
Geologic and hydrologic features of the area	
Description of tables	- 15
Well-numbering system	- 16
References	- 18
TABLES	
En Print de Carrier Contraction	
Table 1. Description of wells in the west part of the Middle	
Mojave Valley area	- 21
2. Cross index of other well numbers and Geological	
Survey numbers	- 74
3. References that contain water-level measurements in	
wells in the west part of the Middle Mojave Valley	
area, California	- 76
4. Wells for which periodic water-level records are	
available	- 77
5. Records of water levels in wells	- 79
6. Drillers' logs of wells	- 89
7. Chemical analyses of waters from wells	- 114
PLATE	
Enterthinguise	
Plate 1. Map of the west part of the Middle Mojave Valley area,	
California, showing recommaissance geology and	
locations of wellsIn I	pocket

DATA ON WELLS IN THE WEST PART OF THE MIDDLE MOJAVE VALLEY AREA, SAN BERNARDINO COUNTY, CALIFORNIA

By R. W. Page, W. R. Moyle, Jr., and L. C. Dutcher

PURPOSE AND SCOPE OF THE WORK AND REPORT

The data presented in this report were collected by the U. S. Geological Survey as a phase of the investigation of water wells and general hydrologic conditions throughout much of the desert region of southern California. The study was made as a part of the cooperative program with the California Department of Water Resources.

The desert regions of California are characteristically regions of nearly barren mountain ranges and isolated hills surrounding broad valleys which are underlain by alluvial deposits derived from the surrounding highlands. The valley areas generally contain ground water having a wide range in chemical quality, which in many areas can be more fully developed for beneficial use.

The general objective of the cooperative investigation is to collect and to tabulate all available hydrologic data for the desert basins in order to provide public agencies and the general public with data for use in planning water-utilization and development works, and for use in subsequent ground-water investigations.

Accordingly, the scope of the work carried out by the Geological Survey in each area has included: (1) Visiting and examining most of the water wells in the area, determining and recording their locations in relation to geographic and cultural features and the public-land net, and recording well depths and sizes, types and capacities of pumping equipment, uses of the water, and other pertinent information; (2) measurements of the depth to the water surface below an established and described measuring point at or near the land surface; (3) selection of representative wells to be measured periodically in order to detect and record changes of water levels; and (4) collection and tabulation of well records, including well logs, water-level measurements, and chemical analyses.

The work has been carried on by the U. S. Department of the Interior, Geological Survey, under the general supervision of H. D. Wilson, Jr., District Engineer in charge of ground-water investigations in California, and under the direction of Fred Kunkel, Geologist in Charge of the Long Beach subdistrict office. The fieldwork was carried on by the authors, with the assistance of R. B. Bartlett and J. R. Cox, between October 1957 and September 1958 from the subdistrict office at Long Beach.

LOCATION AND GENERAL FEATURES OF THE AREA

The west part of the Middle Mojave Valley area described in this report (plate 1) covers about 470 square miles and in general includes parts of the Upper Mojave, Middle Mojave, and Harper Valleys (after Thompson, 1929, pls. 17 and 22). The principal communities in the area are Adelanto, Oro Grande, Helendale, and Beechers Corners.

The area is in the southwestern part of the Mojave Desert region between 117°10' and 117°40' west longitude and 34°30' and 35°00' north latitude. The southern boundary is coincident with the northern boundary of the Upper Mojave Valley area after Bader, Page, and Dutcher (1958). The northeastern boundary lies along the approximate location of the Helendale fault which trends generally northwestward. The northern boundary is the 35°00' north latitude line, which also is the southern boundary of the Harper Valley area (Kunkel, 1956). The western limit coincides with the boundary line between San Bernardino and Los Angeles Counties.

The area is shown on all or parts of the following U. S. Geological Survey topographic quadrangle maps: Adelanto, Helendale, Shadow Mountains, Victorville, and Victorville NW, at a scale of 1:24,000; Apple Valley, Hawes, Shadow Mountains, Victorville, and Krausr, at a scale of 1:62,500; and Barstow at a scale of 1:125,000.

Access to the area is provided by U. S. Highways 66, 395, and 466, as well as several other paved and many unpaved reads.

Topographically the area consists principally of broad alluvial fans and gently sloping alluvial plains that extend into the area from the northern slopes of the San Bernardino and San Gabriel Mountains. The Mojave River traverses the area from south to north in a well-defined channel cut below the surrounding alluvial plains and bedrock hills.

The Shadow Mountains and the Kramer Hills are the dominant topographic forms in the western part of the area. Quartzite and Silver Mountains and unnamed hills rise above the alluvial plain and border the area on the southeast. The mountains and hills consist mainly of granitic, metamorphic, and sedimentary rocks which are of little or no significance with respect to the water supply of the area.

PREVIOUS WORK AND ACKNOWLEDGMENTS

Data on ground water in the west part of the Middle Mojave Valley area are contained in several U. S. Geological Survey water-supply papers (table 3) and in reports by the California Department of Engineering (1918), California Department of Public Works (1934), California Department of Water Resources (1958), and unpublished data from the San Bernardino County Flood Control District and the U. S. Eureau of Reclamation.

The California Department of Water Resources and the San
Bernardino County Flood Control District provided access to all
pertinent information in their files, including numerous well logs,
water-level records, and chemical analyses. The U. S. Bureau of
Reclamation also provided water-level records and other miscellaneous
data.

The geology as shown on plate 1 is by R. W. Page and W. R. Moyle, Jr.,

Plate 1. Map of the west part of the Middle Mojave Valley area, California, showing reconnaissance geology and locations of wells.

and is largely generalized after unpublished mapping by T. W. Dibblee, U. S. Geological Survey, Mineral Deposits Branch, in the Kramer and Hawes quadrangles, L. C. Dutcher in the Shadow Mountains, Victorville, and Hawes quadrangles, and in part after Bowen (1954).

The cooperation and assistance given by the many ranchers, well owners, drillers, and public agencies contributed materially to the completeness of the data presented in this report and are most gratefully acknowledged.

GEOLOGIC AND HYDROLOGIC FEATURES OF THE AREA

The geologic units in the west part of the Middle Mojave Valley area can be grouped into two broad categories; consolidated rocks and unconsolidated deposits. The consolidated rocks are for the most part impervious and, except for minor amounts of water in cracks and weathered zones, yield little or no water. The consolidated rocks (pl. 1) comprise the old crystalline, metamorphic, and consolidated sedimentary rocks of pre-Tertiary age which collectively form the basement complex and the consolidated sedimentary rocks of Tertiary age.

The consolidated sedimentary and pyroclastic rocks of Tertiary age are parts of the Ricardo formation of Pliocene age in the Kramer quadrangle (Dibblee, unpublished) and the Tropico group of Miocene(?) and Pliocene(?) age, which was mapped by Dibblee (1958) in the Castle Butte quadrangle. They consist mainly of gray and red conglomerate, arkose, cobble gravel, tuff, sandstone, chert, limestone, gravel, sand, silt, and clay. For the most part these rocks are poorly permeable, but locally where penetrated by deep wells they yield small amounts of water to domestic wells.

Volcanic rocks of acidic composition, mainly andesite, rhyolite, quartz basalt, and dacite of Miocene(?) and Pliocene age, also occur in the west part of the Middle Mojave Valley area. These rocks also are part of the Ricardo formation and the Tropico group.

Extrusive and intrusive basalts of Miocene(?) and Pliocene(?) age also occur in the area. These rocks are part of the Tropico group.

The unconsolidated older alluvium of late Pleistocene age consists of compact arkosic gravel, sand, silt, and clay. The deposits are weathered, and locally the feldspars have been altered to clay. Near the hills the unit is predominantly gravel but beneath the valley areas it is finer grained and better sorted. Because the older alluvium overlies the basement complex, older fan deposits, or Tertiary continental rocks on which an erosional surface of considerabl local relief is present, the thickness of the older alluvium varies greatly from place to place. Where saturated the older alluvium yields moderate quantities of water to wells.

The older fan deposits of Pleistocene age consist of slightly consolidated fanglomerate or unsorted, unbedded boulder gravel occurring as isolated erosional remnants. The materials are mainly from a granitic source but fragments of basalt, andesite, dacite, and metamorphic rocks are common. The unit is nearly everywhere above the water level in wells and is unsaturated. However, the attitude of this unit suggests that locally it may extend beneath the younger or older alluvium in the valley and where saturated may yield small quantities of water to deep wells.

Old lake deposits of late Pleistocene age are locally interbedded with the older alluvium or the older fan deposits. These deposits are silt, clay, fresh-water limestone, and lime-cemented gravel, sand, and silt.

The river alluvium of Recent age underlies the flood plain of the Mojave River and is composed mainly of fine gravel and sand. Where saturated it yields water freely to wells. The river alluvium beneath the Mojave River, where most of the wells are drilled to shallow depths, is the principal water-bearing unit in the area. However, beneath much of the area west of the river, where the depth to water is greater and where the younger alluvium is absent and the younger fan deposits are unsaturated, the wells yield water derived from the older alluvium.

The river-channel deposits beneath the active channel of the Mojave River consist mainly of highly permeable sand which permits a large seepage loss to the main water body whenever runoff occurs.

The younger fan deposits of Recent age are mostly poorly sorted boulders, arkosic gravel, sand, silt, and clay derived from nearby hills or mountains. The materials have been transported only a short distance and mainly represent mudflow or slope-wash debris. Near the hills and mountains the younger fan deposits are coarse grained, but they become finer with increasing distance from the areas of active erosion. These deposits are poorly sorted and poorly permeable, are usually above the water table, and are believed to be unpromising sources of water.

Playa deposits of Recent age occur principally at the base level of some minor drainage areas. They consist principally of silt and clay and minor amounts of sand, are of low permeability, and where saturated usually contain water having a moderate to very high content of dissolved solids.

Unconsolidated coarse to fine dune sand occurs in the northwest part of the area. The dunes, in part at least, are actively drifting; locally some small interdune playas are included in the area shown as dune sand on plate 1.

In 1958 the water levels in wells ranged from near land surface beneath much of the land near the river to more than 200 feet below the surface of the higher parts of the alluvial fans and plains. The movement of ground water through the older alluvial deposits is complicated by several ground-water barriers in the area which are presumed to be major faults. Ground-water recharge to the area is from deep penetration of rain, percolation of surface water from the Mojave River, and subsurface ground-water flow from the Upper Mojave Valley area of Bader, Page, and Dutcher (1958).

Deep penetration of rain is minor, but during infrequent wet years probably occurs over the entire area. In the area west of the river and approximately north from the latitude of Bryman junction deep penetration of rain and local storm runoff probably are the principal sources of ground-water recharge. Subsurface ground-water flow from the Upper Mojave Valley area is the principal source of recharge to the area west of the river southward from Bryman junction. Numerous springs issue from the bluffs along the west side of the river near Oro Grande.

The Helendale fault (pl. 1) strikes across the Mojave River north of Helendale but does not appear to be a barrier to the movement of the ground water in the river alluvium. Ground-water movement in the river alluvium is downstream generally parallel to the river. In the area near Adelanto the ground-water movement is northeastward toward the river but in the several subbasins separated by barriers in the north and northwest parts of the area ground-water movement is southeastward or eastward toward the river.

About 625 wells were canvassed in the west part of the Middle Mojave Valley area during the investigation. A few of these wells are not shown on plate 1 and table 1 because they were either dry or destroyed at the time of the field canvass and little or no information is available for them.

DESCRIPTION OF TABLES

The tables in this report contain or refer to all known data, published and unpublished, for wells in the west part of the Middle Mojave Valley area.

In table 1 all wells canvassed for which data are available are listed according to township, range, and section. (See well-numbering system, p. 16.)

In table 2 cross indexes are given for numbers previously assigned to wells by others and well numbers assigned by the Geological Survey.

Table 3 lists publications or reports which contain water-level measurements made in wells in the area.

In table 4 the wells are listed for which periodic water-level measurements are available.

Table 5 contains all available unpublished records of water levels in wells. Also, the complete records of water-level measurements are given for wells 6/5-14M1, 29J2, 34E1, 7/4-30C1, 7/5-22R1, 8/4-20N1, and 31R1. These are key wells which indicate ground-water conditions in various parts of the area.

Table 6 contains drillers' logs of wells and table 7 contains chemical analyses of water from wells.

WELL-NUMBERING SYSTEM

The well-numbering system used in the west part of the Middle Mojave Valley area is that used by the Geological Survey in California since 1940. It has been adopted by the California Department of Water Resources and by the California Water Pollution Control Board for use throughout the state.

Wells are assigned numbers according to their locations in the rectangular system for the subdivision of public land. For example, in the number 7/4-6Dl, which was assigned to the irrigation well of Norman Goss, the part of the number preceding the slash indicates the township (T. 7 N.), the part between the slash and the hyphen is the range (R. 4 W.), the number between the hyphen and the letter indicates the section (sec. 6), and the letter indicates the 40-acre subdivision of the section as shown in the accompanying diagram.

D	С	В	Α
E	F	G	Н
М	L	К	J
N	P	ବ	R

Within the 40-acre tract wells are numbered serially as indicated by the final digit. Thus, well 7/4-6Dl is the first well to be listed in the $NW_{4}^{1}NW_{4}^{1}$ sec. 6. Because the area lies entirely in the northwest quadrant of the San Bernardino base and meridian lines the foregoing abbreviation of township and range numbers is sufficient.

For the well numbers where a dash has been substituted for the letter designating the 40-acre tract the dash indicates that the well is plotted from unverified location descriptions; the indicated sites of such wells were visited but no evidence of a well could be found.

Exceptions to the system of numbering wells, according to their position in the 40-acre subdivision of the section, are to be found. In those instances where the wells have been found to be located inaccurately, they have been correctly plotted on the map but the original number assigned has been retained. This has been done to avoid confusion in the numbering system and to prevent the necessity for number changes in reports already published. Fortunately these mislocated wells are few in number and were seldom misplaced any farther than one of the adjoining 40-acre subdivisions.

REFERENCES

- Bader, J. S., Page, R. W., and Dutcher, L. C., 1958, Data on water wells in the Upper Mojave Valley area, San Bernardino County, Calif.:
 U. S. Geol. Survey mimeo. rept., 238 p.
- Benda, W. K., Erd, R. C., and Smith, W. C., 1957, Core logs from five holes near Kramer, in the Mojave Desert, Calif.: U. S. Geol. Survey mimeo. rept., 132 p.
- Bowen, O. E., Jr., 1954, Geology and mineral deposits of the

 Barstow quadrangle, San Bernardino County, Calif.: California

 Div. Mines Bull. 165.
- California Department of Engineering, 1918, Report on the utilization of Mojave River for irrigation in Victor Valley, Calif.:

 Bull. 5, 93 p.
- California Department of Public Works, Water Resources Division,
 1934, Mojave River Investigation: Bull. 47, mimeo. rept., 249 p.
- California Department of Water Resources, 1958, Water supply conditions in southern California during 1956-1957, vol. 3, Precipitation and water level data, Lahontan, Colorado River basin, Santa Ana, and San Diego regions: Bull. 39-57.
- Dibblee, T. W., Jr., 1958, Geologic map of the Castle Butte quadrangle, Kern County, Calif.: U. S. Geol. Survey Mineral Inv. Map MF-170.
- Dickey, D. D., 1957, Core logs from two test holes near Kramer, San

 Bernardino County, Calif.: U. S. Geol. Survey Bull. 1045-B, 16 p.

- Kunkel, Fred, 1956, Data on water wells in Cuddeback, Superior, and
 Harper Valleys, San Bernardino County, Calif.: U. S. Geol. Survey
 mimeo. rept., 73 p.
- San Bernardino County Flood Control District, 1951, Hydrologic and climatic data, v. 2, 1947-50: Mimeo. rept., p. 170.
 - 1954, Hydrologic and climatic data, v. 3, 1950-51 and 1951-52: Mimeo. rept. p. 131, 137.
 - 1958, Hydrologic and climatic data, v. 4, 1952-53 and 1953-54: Mimeo. rept. p. 159-160, 162-163, 165.
- Thompson, D. G., 1929, The Mohave Desert region, Calif.: U. S. Geol. Survey Water-Supply Paper 578, p. 266-279, 371-436.
- United States Geological Survey, 1940, Water levels and artesian pressure in observation wells in the United States: Water-Supply Paper 886.
- United States Geological Survey, 1941-57, Water levels and artesian pressure(s) in observation wells in the United States, part 6, Southwestern United States: Water-Supply Papers 911, 941, 949, 991, 1021, 1028, 1076, 1101, 1131, 1161, 1170, 1196, 1226, 1270, 1326, 1409.

Table 1.-- Description of wells in the west part of the Middle Mojave Valley area, San Bernardino County, Calif

USGS number: The number given is the Geological Survey number assigned to the well according to the system described in the section on the well-numbering system.

or from Geological Survey water-supply papers given in table 3, R Atchison, Topeka, and Santa Fe Railway, SFC-1 Benda, W. K., Erd, R. C., and Smith, W. C., 1957, U. S. Geol. Survey mimeographed report, 132 p. A number following the letters is the well number used in the report, or by the agency, and is given BLM U. S. Bureau of Land Management, BR from unpublished U. S. Bureau of Reclamation records at Boulder City, Nev., CDE California Department of Engineering (1918) and also republished in Thompson (1929), DEC-1 Dickey, D. D., 1957, U. S. Geol. Survey Bull. 1045B, 16 p., DGT from Thompson (1929), F from the San Bernardino County Flood Control District, GS observations and measurements made by the Geological Survey or reported by owners, drillers, or others, M from California Department of Public Works (1934), Source of data and other numbers: The source of data on each line is indicated by the following symbols: only where different from the Geological Survey number.

information summarized on the top line, opposite the well number. Where only the year is shown, no date was given in the source reference but the information is assumed to be contemporaneous with other dated Date of observation: Data for each well are presented in reverse chronological order, with the most recent information from the same source.

Owner or user: The name given is the owner or user of the well on the date indicated. If more than one set of data are given for a well the name is not repeated unless it is known to be different. The completion date was obtained from the driller's log or reported by the owner or others. Year completed:

Depth: Depths of wells given in whole feet were reported by owners, drillers, or others; depths given in feet and tenths were measured below land-surface datum by the Geological Survey.

C cable-Type of well and diameter: Type of well construction is indicated by the following symbols: A auger, tool, D dug, Dc dug and cable-tool, Dr drilled, R rotary. G indicates the well is gravel packed. number following the letter is the diameter of the casing or pit in inches. Pump type and power: The type of pump or method of lift is indicated by the following symbols: A airlift, C centrifugal, J jet, L lift, N none, S submersible turbine, T turbine. The type of power is indicated as follows: D diesel engine, E electric motor of undetermined horsepower (where a number appears in this column it indicates the rated horsepower of an electric motor), G gasoline engine, H hand operated, N none, W windmill. Yield: The yield or output of the pump in gallons per minute is usually based on tests performed by the California Electric Power Co. and reported by the well owners or drillers, and is not necessarily the maximum capacity of the well or installed pump.

Specific capacity: The specific capacity of a well is its rate of yield per unit of drawdown of the water level in the well. It is determined by dividing the figure in the Wield column by the drawdown resulting from sustained pumping at that rate; the result is expressed in terms of gallons per minute per foot of drawdown. The specific capacity of a well is its rate of yield per unit of drawdown of the water level The yield and drawdown data are principally from tests performed by the California Electric Power Co. and reported by well owners and drillers.

Dm domestic, Ds destroyed or dry, Ir irrigation, In industrial, Ps public supply, S stock, T test for oil or boron, Un unused. Use:

Ter top of curb To top of pit The top of pump base Tel top of steel ladder The point from which water-level measurements by the Geological Survey are made is described Le land surface

Tap top of access pipe

To top of beard cover

To top of casing

Tob top of concrete bricks

Toc top of casing cover Enc bottom of hole in casing hot bottom edge of pump base Hcc hole in casing cover hole in pump base Na no access Measuring point: as follows:

suffix letters N, S, E, W, indicate the side, north, south, east, or west, from which the measurement is made. The distance of the measuring point above or below(-) land-surface datum is given in feet and tenths and sometimes hundredths. All measurements of water level are from the same measuring point unless otherwise indicated; however, the measuring points used by the California Electric Power Co., drillers, California Department of Engineering (1918), and others are not known.

Altitudes given to the nearest foot were interpolated from Geological Survey topographic maps having Altitude: The altitude given is the altitude of land-surface datum, the plane of reference, at the well. determined by spirit leveling by the California Department of Engineering (1918) or the U. S. Bureau 10-, 20-, 25-, or 40-foot contour intervals. Altitudes given to the nearest tenth of a foot were of Reclamation.

reported or approximate depths to water level are given in whole feet. The water-level measurements given are given as tabulated in the reference, and, as tabulated, are depth to water below ground surface, which probably is the same as land-surface datum of this report. For M numbers (from the reference given in table 2, part 2) the depths to water level given are below ground surface, which probably is the same below or above the measuring point; the measurement given is the depth to water below land-surface datum. For CDE (California Department of Engineering, 1918) and DGT (Thompson, 1929) numbers the measurements Water level: Measured depths to water level are given in feet, tenths, and hundredths, or feet and tenths; by the Geological Survey for 1957 and 1958 are below land-surface datum, and the distance between the measuring point and land-surface datum has been subtracted from or added to the measured water level as land-surface datum of this report.

Other data: C chemical analysis of water is given in table 7, L driller's log of well is given in table 6, W unpublished records and selected published records of water levels are given in table 5, Wp records of water levels are in the references given in table 3.

	1 g														
••••	Other data		ы						ы				П		
Water	Depth below 1sd (feet)		98	(a)		277		77.30	80.45	0.620	83.07		d51.18	18.37	18.32
∆1+1+1nd⊖	of 1sd (feet)		2,630	2,590	2,600	2,600	2,600	2,600	2,600	2,600	2,600	2,600	2,580	2,560	2,560
:Measuring: 11+1+11de:	point (feet)		Na		Na	Tcc 0.5	Na	Hpb 1.0	Tc 1.0	Tc 1.0	TcW 1.0	Na	TocE 1.0	TcW 2.0	TcN 1.5
	Yield: His (gpm): coct:			Pa	Da	吕	Da	Din	Den	Den	Un	Dm	E C	Un	Un
Well data	1 41		ر 1		J 12	SIN	JJ	S 1	\$ 3/4	در ۱۵۱	N	J 3	L W	N	N
Well	Type, :Pump diam type : eter: and :(in.):powe		ω ω	9	C 10	9 10	c 10	9 0	00	∞	9	9	Φ	9	9
	Septh (ft.)		145	88	175	131	96	96	129	115	98	185	115	30.0	27.9
	Year I com-		1957	1949	1948	1948	1948	1947	1955				1947		
	Owner or user	T. 6 N., R. 4 W.	J. Villareal	Rongnie Newton	Henery Shelton	J. C. Dunkley	F. J. Boone	E. D. Love	J. P. Blankenship	Earl Corrales	J. Villareal	F. New	Wayne Murry	Lloyd Payne	Lloyd Payne
2	qo		10-2-57	10-2-57	10-2-57	10-2-57	10-2-57	10-2-57	10-2-57	10-2-57	10-2-57	10-2-57	10-2-57		10-3-57
Source	r0		GS	GS	SS	GS	GS	GS	GS	GS	GS	GS	GS	SS	GS.
	USGS		199-4/9	601	602	603	1 709	\$19 24	, 909	LT9	618	609	6010	11109	6012

Colorado				Н		Н			G.							
GS 10-1-57 R. L. Denny 1994 100 C 8 S 3/4 Dm TcW 1.0 2,0 GS 10-1-57 Minnie Couse 1954 96 C 8 S 3/4 Dm TcW 1.0 2,0 GS 10-1-57 Minnie Couse 1954 265 RG 6 J 1 Dm ThcM 0 2,2 GS 10-1-57 H. H. White 1947 265 RG 6 J 1 Dm ThcM 0 2,2 GS 11-7-58 R. D. Workman 1947 104 RG 6 J 1 Dm ThcM 1.0 2,2 GS 110-2-57 Della Burge 1925 58 Dc 48 J ½ Dm ThcE 1.0 2,5 GS 10-3-57 Della Burge 1950 97 C 8 J ½ Dm ThcE 1.0 2,5 GS 10-3-57 Della Burge 1950 97 C 8 L W Dm Thc 1.0 2,5 GS 10-1-57 R. E. Mitchell<	61.98	d66.33	d63.99		(e)	44.53	40.19	42.08	dry 22.1 35.0	d42.32		94.35		31.21	39.96	
GS 10-1-57 R. L. Denny 1954 100 C 8 J 3/4 Dm GG GS 10-1-57 Minnie Couse 1954 96 C 8 S 3/4 Dm Dm GS 10-1-57 C. L. Langley 104 265 RG 6 J 1 Dm Dm GS 10-1-57 G. L. Langley 1047 265 RG 6 J 1 Dm Dm GS 10-2-57 Jergen Forseng 1953 103 C 8 J 1 Dm Dm GS 11-7-58 R. D. Workman 1947 104 RG 6 N N U Un GS 10-3-57 Della Burge 1925 58 Dc 48 J ½ Dm Dm CDE-302 J917 W. H. Robinson 1950 97 C 8 J 1½ Dm Dm Dm CDE-302 J917 W. H. Robinson 1954 65 C 6 J 1 Dm Dm Dm GS 10-2-57 Bevey Cook 1947 65 C 6 J 1 Dm Dm Dm GS 10-1-57 Devis Stirens 1951 8 N N N Un Dm GS 10-1-57 Leland Roberts 1977.2 IJ N N N Un Dm GS 10-1-57 Leland Roberts 1977.2 IJ N N Un Dm GS 10-1-57 Leland Roberts 1977.2 IJ N N Un Dm GS 10-1-57 Leland Roberts 1977.2 IJ N N Un Dm GS 10-1-57 Leland Roberts 1977.2 IJ N N Un Dm GS 10-1-57 Leland Roberts 1977.2 IJ N N Un Dm GS 10-1-57 Leland Roberts 1977.2 IJ N N Un Dm GS 10-1-57 Leland Roberts 1977.2 IJ N N Un Dm HALL 1977.2 IJ N N Un Dm GS 10-1-57 Leland Roberts 1977.2 IJ N N Un Dm GS 10-1-57 Leland Roberts 1977.2 IJ N N Un Dm HALL 1977.2 IJ N N N Un Dm HALL 1977.2 IJ N N N Un Dm HALL 1977.3 IJ N N N UN DM HALL 1977.3 IJ N N	1.0	1.0	0		2,610	1.0	1.0	·	9.	٠,		1.0		-7.0	3.5	bove water level
GS 10-1-57 R. L. Denny 1954 100 C 8 5 GS 10-1-57 Minnie Couse 1954 96 C 8 S GS 10-1-57 C. L. Langley 4 J GS 10-1-57 H. H. White 1947 265 RG 6 J GS 10-2-57 Jergen Forseng 1953 103 C 8 J GS 11-7-58 R. D. Workman 1947 104 RG 6 N GS 10-3-57 Della Burge 1925 58 Dc 48 J GS 10-3-57 Jack Williams 41 D 7 C 8 J GS 10-3-57 Buckbee 1950 97 C 8 J GS 10-2-57 R. E. Mitchell 1953 C 8 L GS 10-1-57 Dewey Cook 1947 65 C 6 J GS 10-1-57 Devis GS 10-1-57 Devis GS 10-1-57 Devis GS 10-1-57 Devis GS 10-1-57 J GS 10-1-57 J. S. Stirens GS 10-1-57 J GS 10-1-1-1 J GS 10-1-1-1 J GS 10-1-1 J GS 10-1-1 J GS 10-1-1 J GS 1					Dm											1
GS 10-1-57 R. L. Denny 1954 100 C 8 GS 10-1-57 Minnie Couse 1954 96 C 8 GS 10-1-57 C. L. Langley 4 GS 10-1-57 H. H. White 1947 265 RG 6 GS 10-2-57 Jergen Forseng 1953 103 C 8 GS 11-7-58 R. D. Workman 1947 104 RG 6 GS 10-3-57 Della Burge 1925 58 Dc 46 GS 10-3-57 Jack Williams 1950 97 C 8 GS 10-3-57 Buckbee 1955 99 C 6 GS 10-3-57 Buckbee 1959 67 C 8 GS 10-3-57 Dewey Cook 1947 65 C 6 GS 10-1-57 Davis GS 10-1-57 Leland Roberts 8 GS 10-1-57 Leland Roberts 8 GS 10-1-57 Leland Roberts 197.2 111	J 3/4	S 3/4												J 3/4		
GS 10-1-57 R. L. Denny 1954 GS 10-1-57 Minnie Couse 1954 GS 10-1-57 C. L. Langley 1947 GS 10-2-57 Jergen Forseng 1953 GS 10-2-57 Jergen Forseng 1953 GS 10-3-57 Della Burge 1925 GS 10-3-57 Della Burge 1950 GS 10-3-57 Jack Williams 1953 GS 10-1-57 Jack Williams 1967 GS 10-1-57 Leland Roberts GS 10-1-57 Leland Roberts GS 10-1-57 Leland Roberts GS 10-1-57 Leland Roberts	8 9		7				Dc 48					∞		ω	7	υ
GS 10-1-57 R. L. Denny GS 10-1-57 Minnie Couse GS 10-1-57 C. L. Langley GS 10-1-57 H. H. White GS 10-2-57 Jergen Forseng GS 10-3-57 Della Burge GS 10-3-57 Jeck Williams M-5 9-7-32 W. C. Buckbee CDE-302 1917 W. H. Robinson CDE-302 1917 W. H. Robinson GS 10-3-57 Dewey Cook GS 10-1-57 Devts GS 10-1-57 Leland Roberts GS 10-1-57 Leland Roberts GS 10-1-57 Leland Roberts	100	96		265	103	104	58	26	141		65	98.1			107.2	
GS 10-1-57 GS 10-1-57 GS 10-1-57 GS 10-1-57 GS 10-2-57 GS 10-3-57 GS 10-1-57	954	450		1	53	1	25	0		\mathfrak{C}	1					
	ĭi	16		194	19	191	19	195		195	191					
			C. L. Langley	H. White		Workman			Jack Williams W. C. Buckbee W. H. Robinson	E. Mitchell		Davis	J. S. Stirens	Leland Roberts		losure.
0 4	R. L. Denny	Minnie Couse		H. H. White	Jergen Forseng	R. D. Workman	Della Burge	Della Burge	Jack W. C. W. H.	R. E. Mitchell	Dewey Cook				10-1-57	ocked enclosure.
	10-1-57 R. L. Denny	10-1-57 Minnie Couse	10-1-57	10-1-57 H. H. White	10-2-57 Jergen Forseng	11-7-58 R. D. Workman	10-3-57 Della Burge	10-3-57 Della Burge	10-3-57 Jack N 9-7-32 W. C. 1917 W. H.	10-2-57 R. E. Mitchell	10-3-57 Dewey Cook	10-1-57	10-1-57	10-1-57		il in locked enclosure.

Well in locked enclosure.
Tape smeared.
Pumped recently
Pumping.

[.] မ ပ ပ ည မ

Water	Depth Other below 1sd data (feet)		25.13	26.31	32.54		b26.55	(e)	17.94	59.49	24.12		16.82	17.53	15.88
11+4+LV	of 1sd (feet)		2,590	2,590	2,590	2,590	2,590	2,590	2,580	2,590	2,590	2,600	2,590	2,590	2,580
:Measuring: Altitude:	point (feet):		TcE 1.0	TcS -3.5	TpbS 1.0	Na	Bhcs 2.0		Tapw 0	TcN 0	TcW5		TapS 1.5	Tocs 1.0	TheE .5
• • •	Use		dn	dn	Da	Da	Da	Ä	D E	8	Da	Ds	D	2	Ir
ta	type, :Pump : : : : : : : : : : : : : : : : : : :		Z	Z	α	7	5	0	~lo	7	-10	N	~!a	1 1	10
Well data	: Type,:Pump: Depth:diam-:type: (ft.): eter: and: :(in.):power:		12 N	8 18	J 6	5 J	8	H	o 9	D 9	8	N 9	13 J	33 C	14 T
We	Typen: dian): etc.						ပ	ပ			Ö	Ü	, ,		RG
	Depth: 6	ಕಿರೆ	51.0	47.3		54	78		22		04	20	38		
•• ••	Year com- pleted	4 WContinued					1952	1948		~	1948	1946	1952	1950	
	Owner or user	T. 6 N., R. 4 W	10-1-57 Leland Roberts	Leland Roberts	W. G. Smith	G. A. Allison	W. B. Smith	W. B. Smith	J. B. Quimm	Vivian Twist (former)	E. T. Hoffman	Daniel Gonzales	Daniel Gonzales	A. G. Collings	L. H. Leachman
1240	of observa- tion		0-1-57	10-1-57	10-1-57	10-1-57	10-1-57	10-1-57	10-1-57	10-1-57	9-30-57	9-30-57	9-30-57	10-1-57	10-2-57
Source	of data and other numbers		GS 1	GS I	GS 1	GS 1	GS 1	GS 1	GS	GS 1	GS 9	GS 85	GS 9.	GS 1(GS 1(
	USGS		4N9-4/9	6N5	6P1	6P2	707	1aL 26	702	703	国	TE2	7E3	包	7.05

							ΜĎ						ы	
30.15		18.79	25.20	c38.79		16.89	dry 21.1	2.14	dry	34.90	7.55	417.47	c15.41	16.63
2,590	2,600	2,590	2,600	2,600	2,590	5,600	2,600	3,475	3,060	2,620	2,600	2,610	2,610	2,620
TcS 0	Na	TpE 0	TcW 1.5	TCE .5	Na	TcN 0	Tbc 1.3	TcS 1.0		Нсс .5	Bhcs 1.0	TcS -7.0	TcW 4.5	HpbM 1.0
D _m	P	Da	Ē	D C	吕	집	Ds	Un	Ds	ដ	rI	ដ	吕	Pa Pa
										IO	25			TIC
J 1	J	C 7	I H	JJ	را	ا تا	N	Z	N	$T^{\frac{1}{2}}$	T 125	0.5	JJ	T 7.1
∞	9 0	5 RG 12	9	RG 8	C 10	ထ ပ	ω	3 92	7 D 36	C 14	17	12	RG 6	12
265	84	43.5	99	95		28		51.8	91.7			04	120	
	1950	1948		1954	1955	1952		1945	0	1955	1954	1944	1950	1950
10-1-57 George Antic	W. B. Smith	L. C. Stetler	Norberto Carlos	L. M. Griggs	J. R. Hook	L. C. Stetler	L. C. Stetler Arrowhead Lake Co.	S.W. Portland	cement co., well i	Triangle Rock Prod.		J. G. Ivy	J. G. Ivy	Riverside Cement Co.
10-1-57	10-1-57	9-27-57	9-30-57	9-30-57	9-30-57	9-27-57	10-3-57 9-9-32	9-6-57	8-30-57	9-30-57	9-27-57	9-24-57	9-24-57	GS 9-26-57 Tape smeared. Pumped recently.
GS	GS	SS	GS	SS	SS	SS	GS M-4	GS	GS	GS	GS	GS	SS	GS 9- Tape smeared.
(F)	7F2	7ML	7M2	7M3	TWL	TNT	ZNZ	1111	13KL	1801	1861	18F1	18F2	18F3 b. Taj

Other								ı	L L				
		ന	0		0	2				ま			9
Water level Depth Selow lsc (feet)		16.93	21.90	516.2	c17.70	b22.67		d27.52	f17.32	f17.84			c48.06
Measuring Altitude level point of 1sd Depth (feet) (feet) (feet)		620	2,603.6	2,610	2,600	2,610	2,610	2,610	2,610	2,610		2,610	2,650
3 Alt		1.0 2,620	, y				ิณ์	, ,				à	
point (feet):			1.5	.5	5.	TcN-13.0		3.0	TapN 2.5	TccW-2.5			
Measu po.		Tpc	Hpb	TcW	TcS	TCN	Na	Tap	Tapl	Tccl		Na	TcS
Use		Un	ā	E	昌	8	ä	In	In	Un			Pa
Sp.								38	88				
Well data Type, Pump: Ilam-:type:Yield:Sp.: eter: and:(gpm):cap.: In.):power:			¢-•					1100	1500		1620	1620	
data Pump type and power		Z	T 10?	T $1\frac{1}{2}$	T 3	6 3	T 40	T 25	T 25	N	ບ	CR	J 2
Well data :Type,:Pump: Depth:diam-:type: (ft.): eter: and: :(in.):power:		09 Q	12	ω	10	17	77	CG 1.4	CG 114	16	Dr 16	76	10
:T:: 1		23.0											
Dep	led	23	147		140	62	85	78	77	296	125	270	
Year Depth: o com-	T. 6 N., R. 4 W Continued				1952	Riverside Cement Co., 1943	1948	1953	1952	1911			
	Ö	ço.				Co	Co					•	
Owner or user	7	ement	Riverside Cement	٦ ۾	r0	ment	Well 9 Riverside Cement Co.	Riverside Cement	Co., 53-1 Riverside Cement	Co., 52-1 Riverside Cement	Victor Cement Co.	rt Co	
r or	R	de Ce	de Ce	S. R. Dulaney	H. Loomis	de Ce	de Ce	de Ce	53-1 de Ç	22-1 de Ce	ctor Cement	Зешег	Lillian Enos
Owne	9 N	ersi	ersi	Co., well R. Dulane	н. Г	ersi	well versi	ersí	Co., 53-1 verside C	Co., 52-1 verside C	tor (tor (Lian
	티	Riv	Riv	ů S	œ	Riv	W Riv	Riv	C Riv	Riv	Vic	Vic	
Date of observation		9-26-57 Riverside Cement Co.	9-27-57	9-27-57	9-20-57	9-26-57	9-25-57	9-25-57	9-26-57	9-26-57		9-26-57 Victor Cement Co.	9-20-57
0 0		6	9-	9-	6-6	6	6	6	6	6		6	6
Source of data and other numbers		GS	GS	GS	GS	GS	GS	GS	GS	GS	CDE-274	GS CDE-275	Ø
of on nu											CDE	_	GS
USGS		6/4-18F4	18F5	18F6	181	1812	18L3	18P1	18P2	18P3		18P4	1891
nu n		h/9					28						

				H	ы		ы										
	12.77 p		55.24	45.15	(a)		4132.06	12.70	d23.99	(a)	50		25.85		13.81	14.20	
	W .5 2,650	2,620	1.5 2,660	.5 2,650	N .5 2,670	2,620	.5 2,630	5 2,620	.5 2,620	2,630	2,620	2,620	-10.0 2,620	2,620	-3.5 2,620	.5 2,520	
	TapW		Tcc	TcS	HpbN	Na	TcS	TCE	Tes		EH	EN	Tap	Na	[편 [급	FOE	
	Ir	Ds	Un	1.6 Dm	9 Ps	E E	占	un	占	吕	P	ď	ď	占	Cn	Da	
				103	285		20										
	$T 7^{\frac{1}{2}}$	0	N N	T 10	T 7½	C 2	T 5	N	$J_{\frac{1}{2}}$	ل الا	· 1/3	C	N H	ن ماله	J J	- ∤\	
		다 12	D 30	CG 12	10	೮	c 8	12	ω	D 36	လ လ	D 8	Dc 6	10	ω	90	
	58	260	57.5	121	114		220	13	30	23	30	04	59.0	142		0.1	
			1918	1952	1951		1956				1956	1920		1949		1946	
	Riverside Cement	Victor Cement Co.	A. Lara	Riverside Cement	Oro Grande Grammar	Alton Crow	T. H. Wobermin	Ben Haney	W. W. Wood	C. O. Langley	9-19-57 H. L. Morrow	9-19-57 Martin Gonzales	9-20-57 Ardell Hillwig	Charles Leighty	9-19-57 I. M. Whitehouse	9-19-57 J. A. Dershem	Osilve
•	9-27-57	9-26-57	9-24-57	9-27-57	9-27-57	9-19-57	9-19-57	9-18-57	9-19-57	9-19-57	9-19-57	9-19-57	9-20-57	9-19-57	9-19-57	9-19-57	WELL IN LOCKED enclosive
	GS	L GS CDE-273	GS	GS	GS	GS	G S	GS	GS	GS	GS	GS	GS	GS	GS	GS	
	1892	18-1 CD	19A1	19A2	19A3	19B1	19B2	19B3	19B4	19B5	19B6	19B7	19B8	1961	1902		E S
									20								

Well in locked enclosure.
Tape smeared.
Pumped recently.
Pumping.
Nearby well pumping.

	Other					н	C,L	ч			S		C,L	
Water level	Depth below 1sd (feet)		c13.75		13.33		13.75	23.61	10.02	32		61.01	7.31	21.02
: :Measuring: Altitude	of 1sd (feet)		2,620	2,610	2,610	2,613	2,619	2,640	2,630	2,040	2,640	2,580	2,622	2,640
ring:	oint (feet):		1.0		TecW-3.0		4.5	.5	• 5			ů.	4.5	0
Measu	point (feet		Tes	Na	TccW	Na	Ярь	Tcc	Jc	d Ta	123	Tes	qui	ķ.
	Use		昌	릅	Ir	In	Ħ	P	범	E	Da	E E	H.	C)
	Sp.					68	22	61					27	
	Yield:Sp.					1500	900	800					840	
data	ump ype and		C S	100 O	C 3	s 60	T 25	J J	0 2	1 1	C 1		55 5	ري ري
Well o	Type,:Pump: Depth:dlam-:type:Yield:Sp.:Use:(ft.): eter: and :(gpm):cap.:(ft.):power:		8		C 12	91 90	CG 16	CG 14	C 10	0 10	RG 8	8	CG 36	RG 8
	Depth (ft.)	ğ	84	21	24	100	100	147	59	59	70		100	45
	Year com- pleted	4 WContinued	1956	1948	1951	1954	1954	1955	1943	1956	1953	1957	0.,1954	1949
	Owner or user	T. 6 N., R. 4 W.	9-19-57 Emmett Pethoud	H. H. DeWitt	H. H. DeWitt	Ri	Co., 54-4 Riverside Cement	Co., 54-1 H. H. Ley	H. H. Ley	H. S. Osborne	A. V. White	N. F. Tower	Ri	well 54-5 E. M. Clanton
Date	of observa-: tion		9-19-57	9-19-57	9-19-57	9-25-57	9-26-57	9-18-57	9-19-57	9-19-57	9-19-57	10-2-57	9-26-57	9-18-57
Source	of data and other numbers		GS	GS	GS	GS	S S	SS	GS	GS	GS	SS	GS	GS
	USGS number		6/4-1904	1905	1906	19时	19F1	30 19田	19H2	161	1912	1913	19P1	19R1

	Ö	၁	or o		н	ы				ы	Ö		0	
	434.18	33.66	16.1		dry	48.47			(e)	95.36	153.95	160.26	191.14	
2,640	5,640	2,655	2,620	2,680	2,680	2,690	2,690	2,690	2,690	2,710	2,930	2,930	2,870	
	0	0	2.5			1.0				•5	1.2	5.	0	
Na	BhcW 0	Thc	Ter	Na		130	Na	Na		Tc	Tap	JCE	TCE	
Dm	630 45 Ir	四			Ds	D	Din	D _m	Пn	D.	E E	Un	Un Da	
ન 3	T 15	J J		J 1/3	N	L W	ا ر	J 3/4	N	J 7	J 21	N	는 다 나	
В 8	RG 12	12		R 2	RG 6	9 0	R 2	12	RG 2	9 0	ω	R 10	ω	
45	55	48		8	0	92	85		77	112	190	212		
1951	1947			1955	1947	1949	1955	1913	1955	1947		1955		
9-18-57 Hain Johnston	Donald Whittier	Donald Whittier	John Bennette	T. J. McLaughlin	T. J. McLaughlin	J. A. Williams	Aurelio Savedra	P. P. Gerber	Veoda Gerber	B. Cuddy and	H. McKeen G. N. Barrow	J. Osborne	Fanny P. Foster	Pumped recently. Pumping. Obstruction in well above water level.
9-18-57	9-18-57	9-18-57	1-10-34	9-24-57	9-24-57	9-24-57	9-24-57	9-24-57	9-24-57	9-24-57	8-30-57	9- 5-57 9- 1-55	8-30-57	Pumped recently. Pumping. Obstruction in wel
GS	GS	GS	M-3 F-19G1	GS	GS	GS	GS	GS	GS	GS	GS	GS GS	GS GS	Pumped r Pumping. Obstruct
19R2	19R3	19R4	19-1	ZOM	SOMS	20M3	20M4	20M5	20M6	20M7	2471	2472	26B1	6 4 2 E

Other								၁		C,L	C,L			
Water level Depth Selow 1sd (feet)		186.38	dry	dry	17.46	(e)	7.06	10.95	12.05	נו	10		16.41	17.22
Measuring Altitude point of 1sd (feet) (feet)		2,980	2,800	2,795	2,660	5,660	2,650	2,660	2,660	2,647	5,649	2,660	2,660	2,660
ssuring Algoint (feet): (0.5			• 5		1.0	1.0	• 5				5.	0
Measurin point (feet		TcW			TcN		TapE	TcN	Пс	Na	Na	Na	TCE	TcN
Use		In	Ds	Ds	Da	Un	un	Da	E	H	In	吕	E C	Ir
Sp.										8	56			
(ield:										1550	900			
Well data : Type, Pump : Depth:diam-:type : Yield:Sp. :(ft.): eter: and :(gpm):cap : :(in.):power:		L J			J 1/3	N	C	C 3	JJ	S 75	s 30	回じ	L 1/3	C 5
Well data Type, Pump diam-:type eter: and (in.):powe		12		Dr 12	80	C 24	c 12	10	10	19	3 16		Φ	C 14
: Ty : Ty : D: G: C: (1			Д	Н	O					50	SS		RG	
Dep.	peq		85	81	33	30	54			77	53		45	39
Year : Type, :Pump : : com- :Depth:diam-:type :Yield:Sp. :Use :pleted: :(ft.): eter: and :(gpm):cap.:	4 WContinued	•			1947	1943	1932			1954	1954		1954	1933
Owner or user	T. 6 N., R. 4 W.	Victor Lime Rock Co.	E. C. Mann		T. C. Knight	T. C. Knight	T. C. Knight	Lois E. Roehrig	Bubert Knight	Riverside Cement	Riverside Cement	Vo., 54-3 Wayne Sanders	B. W. Corbin	W. Lewis
Date of the three observation		8-30-57	2-19-18	2-19-18	9-18-57	9-17-57	9-18-57	9-18-57	9-18-57	9-25-57	9-25-57	9-10-57	9-10-57	9-10-57 W. Lewis
Source of data and other numbers		GS	DGT-341	DGT-342	SS	SS	GS	SS	GS	GS	SS	GS	SS	85
USGS		6/4-26R1	27-1	27-2	29ML	29M2	5M62 32	29MH	29M5	29M6	29M7	29NJ	29N2	29N3

	ďΜ	ы	н		Ö			Ö		S	Wp		
16.71	8.0	. 12	14	22.52		11.52	416.5	(e)	96.5012	411.89	12.1		7.88
2,660	2,660	2,750	2,660	2,650	2,630	2,630	5,640	5,640	2,730	5,640	5,640	2,650	2,640
TcE-11.3	0			•5		• 5	TcW -4.5		•5	•5	2.4		2.0
TCE	Ter			TcW	Na	TheW	TeW		TCE	TcN	Tpb	Na	TcW
Un D			Ds	D	II	nn	r.	D	P	D	Da Da	Un	D
		48	83										
		1000	1000				450						
G 5		N	N N	J 3	EH	El El	c 15	ا ت ا	L W	J J	N	C 7	C)
8 8	А	91 90	91 90	RG 8	12	14	12	9	ω	ω	Dc 14	9	RG 8
04		100	100	94	50		35	70	115	20		23	11
1936		1941	1942	1949			1945	1949		1952			1947
9-10-57 C. M. Corbin 9-10-57 Hook	Berger Serv. Sta.	Victorville Military Airport, well 1	Victorville Military	E. M. Clanton	E. D. Martin	Harris	Richard Weening	N. D. Shutt	Harris	E. D. Martin	E. D. Martin Jones	R. H. Fowler	9-17-57 Ethel Garrison ocked enclosure.
9-10-57	9- 7-32	14-4 -6	7-30-42	9-18-57	9-17-57	9-17-57	9-17-57	9-17-57	9-18-57 Harris	9-17-57	9-17-57	9-17-57	GS 9-17-57 Ethel Well in locked enclosure.
GS GS	M-1	GS	GS	GS	GS	GS	SB	GS	GS	GS	GS M-105	GS	GS 11 1n J
29N4	29-1	29-2	29-3	30A1	3001	3002	30D1	30D2	30D3	3004	3005	30EL	30E2 a. We

Pumping. Obstruction in well above water level. . و م

Other data		c,r	S	C,L			T.o	ďΜ	I.				
Mater: level Depth Other below 1sd data (feet)		(a)			c21.07	42.60	12.07	8.7	12	74.22	(a)		55.23
Of 1sd (feet)		2,650	2,650	2,650	2,710	2,670	2,650	2,650	2,645	2,790	2,790	2,760	2,740
suring: point (feet):					1.0	•5	5.	3.0		• 5			0
Measurin point (Feet			Na	Na	TCE	TcE	TcN	Tc		ToE		Na	TcW
Use		Ps S	Ps	Ps	Pa	Da	E E	ď	٤	D	Dm	Dm	D
Sp.							13						
: Yield:Sp.		1000	1000	1000			004						
		s 30	T 25	T 25	m D	() ()	N	N	N N	L G	J L	الا	ا ت
Well data : Type,:Pump :Depth:diam-:type :(ft.): eter: and : (ft.):		R 16	c 16	R 16	12	8	16	16	3 26	6		∞	ω
T. T							43.8		50 0				
Dei (fd.	ned	100	105	98		5 37	7		100			97	
Year : Depth:dcom- (ft.):	Contir			1943	1955	1956			1942		1950	1956	
Owner or user	T. 6 N., R. 4 W Continued	George Air Force	George AFB, 3	George AFB, 4	Victor Valley	Country Club Flora Brown	Adelanto Comm. Serv. Distr.	11-15-32 Adelanto Comm.	٠,	Airport, well 2 C. Boyer	Frank Kling	R.W., R. B. Drahos	Carling
	119	Georg	Georg	Georg	Victo	Cou	Adela	Adela	Victo	Airp G. C.	Frank	R.W.,	н. м.
Date of observa-		2-25-58	2-25-58	2-25-58	9-17-57	9-17-57	2-25-58 9-17-57	11-15-32	7-18-42	9- 9-57	9- 6-57	9-10-57	9-11-57 H. M. Carling
Source of data and other numbers		GS	SS	GS	SS	GS	GS GS	M-2	GS	GS	GS	GS	GS
USGS		6/4-3091	30KL	30K2	INOS.	30P1	30 ₆	30-1	30-2	31.71	3181	32B1	32D1

						O							н	н	Ü	O
(a)	c23.29	33.07	(e)	18.07	15.8		d43.17			57.42	50.26	18.95	d52.17	96	(e)	48.31
2,700	2,710	2,710	2,700	2,710	2,690	2,730	2,740	2,740	2,750	2,760	2,750	2,670	2,750	2,760	2,755	2,750
	TcS .5	Bhc .5		Tcr .5	TcN 0	Na	TcS 1.5	Na	Na	TcE 1.0	TcW .5	Taps .5	Tcc .5	Na		BhcE 1.0
E E	D		D	ď	i i	Da	A	Dm	D I	D D	D _m	Un	Dm	Den	콥	B
	25															
	T 12	J 1	디	- E-	H 3	J 12	حا	J 7	J 12	7 7	ا کا	I W	rst-	L 3/4	T 3	T 1
	S 2	RG 8	Dc 36	D 60	8 50	ω	9	Φ	Φ	Φ	10	8	C 10	C 10	12	8
25	62 .	8	30	20.0	54	78			105	150		36	68	105		
	1951	1954	1946	1932	1943				1947			1936	1955	1956		
9-11-57 Ann Poindexter	Vance Newman	H. M. Spencer	B. Hernandez	G. R. Seals	G. R. Seals	G. L. Sanders	E. G. Paulson	E. G. Paulson	E. B. Buck	R. E. Perkinson	Joseph Veaders	C. M. Corbin	Donald Doran	9-10-57 Donald Doran	9-10-57 R. H. Clark	9-10-57 R. H. Clark cked enclosure.
9-11-57	9-11-57	9-11-57	9-11-57	9-11-57	9-12-57	9-12-57	9-12-57	9-12-57	9-12-57	9-12-57	9-12-57	9-10-57	9-11-57	9-10-57	9-10-57	GS 9-10-57 R. H. Well in locked enclosure
SS	GS	GS	GS	GS	SS	GS	GS	GS	GS	GS	GS	GS	SS	GS	GS	GS 11 in
32D2	32D3	32D4	32D5	32D6	32D7	3208	32D9	32010	32011	32012	32013	32014	3261	3262	3263	32G ⁴

c. Pumped recently.d. Pumping.e. Obstruction in well above water level.

Water :	Depth Other below 1sd data (feet)		(a)		र्गः	(a)	37.69	85	65			f75.80		
:	of 1sd (feet)		2,750	2,760	2,740	2,710	1.0 2,710		2,760	2,760	2,740	1.0 2,740	2,740	2,740
Measurin	point (feet):			Na	Na		TCE 1				Na	TCE 1		
	Use		S	P	B	D	Dm	E C	E	Ds	日	Un	Da	D D
	Year : Type, : Pump : : : : : : : : : : : : : : : : : : :							13						
ata	ump ype and		J 1	T 12	ط برایا	J 1	J 7	S 1	s 3/4	N	J J	T J	T T	E 3
Well data	Type, Pump : diam-:type : eter: and : (in.):power:				9 0	9	010	80	8 2	7,7				
	Depth:d (ft.):	ed	100	100	55		65	110	115	27.9		85	96	185
	Year com-	ontinu	1942				1948	1920	1957				2	m
	Owner or user	T. 6 N., R. 4 WContinued	9-10-57 Mary Downing	Mary Downing	Andrew Greba	R. L. Holland Cafe	A. H. Sullivan	E. Barbee	E. Barbee	J. H. Long	Driskie	City of Los Angeles,	well 1 City of Los Angeles,	City of Los Angeles,
+ 5	ල		9-10-57	9-10-57	9- 9-57	9- 4-57	9- 5-57	9- 5-57	9- 5-57	9- 5-57	9- 5-57	9- 5-57	9- 5-57	9- 5-57
Source	of data and other numbers		GS	GS	GS GS	GS	GS	GS	SS	SS	GS	GS	S	GS
	USGS		6/4-32G5	3266	3267	3271	3232	3233	3274	3215	3216	3237	3218	3239

		ы														
	110	52.91	51,3.0	33.83	60.84	55.56	7.97	5.70	9:56	(a)			c48.3	549	d31.39	
	2,820	2,765	2,737.3	2,721.4	2,790	2,790	2,678.4	2,673.6	2,681.2	2,710	2,676.3	2,676.8	2,715.7	2,684	2,682.8	
		Bhcs 1.0	Na	Tcc 1.0	Tc .2	TcN .5	Tsl -1.0	TeW -2.5	Tcc 0		Na	Na	TcW 1.0		Tap .5	
	ם	.4 Dm	Dm	Un	Un	Ir	ដ	H	Un	Da	i,	D D	In	In	ដ	
		35 •														
and .	S	7 5	J 1 1 2 3	NN	N N	日日	c 5	c 15	N	J J	T $7\frac{1}{2}$	J 3/4	T 5	E 5	T 60	
	RG 10	E 10	D 7	106.9 Dc 10	9	9	14	12	14		10	9	CG 10	10	RG 16	
	170	193	158	106.9			99	82	109		63	20	102	70	123	
	E. Barbee 1955	Riverside Cement 1952	R. R. Hamersly	R. R. Hamersly	formerly Hawley	Riverside Cement	S.W. Portland Cement	S. W. Portland Cement	S.W. Portland Cement	Gonzales	S. W. Portland Cement	S.W. Portland Cement	S.W. Portland Cement 1954	Vibro Tile Co., Inc. 1951	S.W. Portland Cement Co., 6	losure.
	9- 5-57	4-11-57	9- 5-57	9- 6-57	9- 6-57	9- 5-57	9- 6-57	6-57	9- 6-57	9- 5-57	9- 6-57	9- 6-57	9- 5-57	4-10-57	9- 6-57	in locked enclosure.
	GS	GS	CDE-271	GS CDE-272	GS	GS	GS	GS	GS	SS	85	SS	GS	GS S	GS	Well in l
	32K1	32NL	32N2 CI	32N3 CI	32N4	32N5	33E1	33L1	3312	33ML	33NL	33N2	33N3	33N4	33P1	a. We
								37								

Tape smeared.
Pumped recently.
Pumping.
Nearby well pumping.

р с. .

er ta				ы								
Other	н			CL					Ö	0	O	O
Water level Depth Depth (feet)	d23.5	12.00			20.02		59.07	51.70	48.49		39.4	38.30
Measuring Altitude level point of 1sd Depth (feet); (feet) teet)	2,685.4	2,681.4	2,680.0	2,700		2,696.4	2,720	2,720	2,720	2,705	2,710	TcN 1.0 2,710
suring: oint: (feet):	0	.5		c	?		1.5	3.0	•5		ņ	1.0
Measurin point (feet	Jc J	Ncp	Na	Na	ocla		Tap	Tcc	TcW	Na	Tcw	TcN
n ae	Ä	un	ď	H		Ds	Ps	88	Du	ם	200	D
Year: Type, Pump: com-:(ft.): eter: and :(gpm):cap.: pleted: :(in.):power: Continued	1000 100					630	h27 7					
Well data :Type,:Pump: :diam-:type:Y :eter:and:(:(in.):power:	T 50	N	N	T 15		O	T 40	P P	J J	I N	J 3/4	J J
Well data Type, :Pump diam-:type eter: and (in.):powe	RG 12	30	77	C 14		Dr 14	R 14	40 Dc 10	0 0	∞	ω	တ တ
Depth: (ft.):	51	040	62.5	262		75	200	09	09		50	50
Year com- pleted	1950			1950			1956		1955		1955	1952
Owner or user Year; D com- pleted; T. 6 N. R. 4 WContinued	S.W. Portland	S.W. Portland		C. L. Abbey		C. Bassini	Apple Valley Ranchos Water	Co., well (Jake Devilinue	E. Osborne	L.S., D. W. Brown	Robert Kappel	V. Gonzales
Date of observa-:	9- 6-57	9- 6-57	9- 6-57	8-29-57	9- 1-55		4-30-57	8-29-57	8-29-57	8-29-57	8-29-57	8-29-57
Scurce of data and other numbers	SS	GS	GS	GS	S S	33-1 CDE-266	SS	GS	GS	GS.	99 99 99	85
USGS	6/4-33P2	33P3	33P4	33R1		33-1	34E1	34M	34W2	34M3	34M4	34M5

_ا			Ö	೮	ن ن		Ö	Ü	Ö	Ö						
143 (56.3	48.25		60.05		×.	11.91	38.12 (85.16 (84.19		87.0			17.64	18.36	
						dry										
2,710	2,735	2,710	2,710	2,730	2,730	2,720	2,700	2,720	2,760	2,730	2,758.4		2,580	2,580	2,560	
		0		• 5			0 10	1.0	. 5					.5	S .5	
Na		TCE	Na	Tcc	Na		Hpb	TcW	TcN	Na			Na	Tcb	TapS	
Den	Ds	D m	昌	Ä	Q	Ds	un	D	Un	Un			i.	ង	I	
											270					
5	N	J 2	J J	5	J J	NN	T 5	ط 1	N	J 7	EH		C 20	C 5	נט	
9 0	Pr	9 0		ω	Ü	9 0	12	8 50	RG 12	9 0	12		CG 10	c 12	Dc 30	
52		55		82	100	48.0		50	108.9	98	107		847	30	53.2	
1950		1955			1953	1942		1954	1953	1948			1953	1942	1950	
8-29-57 L. Johnson	Hadley	J. Osborne	D. Dyer	V. C. Lea	G. Haines	D. Dyer	D. Lyer	R. McElfresh	Beckman	R. McElfresh	C. Bassini	T. 6 N., R. 5 W.	Lloyd Payne	Lloyd Payne	10-3-57 Lloyd Payne	
8-29-57	10-8-57	8-29-57 9- 1-55	8-29-57	8-29-57	8-29-57	8-29-57	8-29-57	8-29-57	8-28-57 9- 1-55	8-29-57	1917		10-3-57	10-3-57	10-3-57	
GS	34M7 GS CDE-268	95 95 95	GS	SS	GS	GS	GS	GS	85 83	GS	34P3 CDE-267		SS	SS	GS	Pumping.
34M6	34M7	34NJ	34N2	34N3	3414	34N5	34N6 34N6	34N7	34F1	34P2	34P3		6/5-1Al	1A2	1A3	ф. Р

	Other													
Water :	Depth elow 1sd (feet)		14.91	8.51	13.73	13.01	11.08	12.42	£16.83	c16.54	15.17	14.62	204.0	183.10
	point of 1sd Depth (feet) (feet) (feet)		TapW 0 2,560	TapN .5 2,550	Hcc 1.0 2,580	HpbE 1.0 2,580	TcW -7.5 2,580	Bhcs 1.0 2,580	TcE -11.0 2,560	Hpbs .5 2,560	TCE .5 2,580	Bhc 0 2,570	2,780.0	TCE 1.5 2,760
	Year : Type, Pump : : : Com- : Depth: diam-: type : Yield: Sp. : Use com- : (ft.): eter: and : (gpm): cap. : : (in.): power: : :		un	Un	D	Da	ਸ਼	Ir	Un	Ir	Dm	Ir	Ds	Da
data	: :Type,:Pump : :Depth:diam-:type :Yield:Sp. :(ft.): eter: and :(gpm):cap: :(in.):power: :		42	N N	r w	L 1	C 15	T 15	N	Т 5	J 1	T 10		T M
Well data	Type, Pump diam: type eter: and (in.):powe		c 30	D 30	3	C 10	0 16	c 16	R 84	C 12	12	77	†††	9
	Depth (ft.)	ą	040	13.0	58	84	84	09	120	09			0.791	
	Year com- pleted	5 WContinued	1941	1947	1946	1952	1947	1956	1952	1956				
	Owner or user	T. 6 N., R. 5 W.	Lloyd Payne	Lloyd Payne	J. J. Newman	J. J. Newman	Dewey Cook	Dewey Cook	Jack Williams	Jack Williams	L. H. Leachman	L. H. Leachman		
Date	go.		10-3-57	10-3-57	10-3-57	10-3-57	10-3-57	10-3-57	10-3-57	10-3-57	10-2-57	10-3-57	10-10-57 2-18-18	10- 8-57
Source	of data and other numbers		CS	GS	SS	GS	GS	GS	GS	GS	SS	SS	GS CDE-287	GS
	USGS		6/5-1A4	181	1111	182	1.13	哲40	1.115	116	TC1	1.81	2EE 2	271

			ч						н				ы		
204.32 208.0	d208.10	dry	85.80	91.04	77.97	b78.78	dry	38.66	54.09		69.05	(a)	(e) 68	74.60	
2,786.0	2,790	2,760	2,765	2,770	2,770	2,765	2,700	2,745	2,760	2,740	2,760	2,760	2,770	2,770	
÷	1.0		•5	0	1.5	0		0	3.		0			1.0	
TcW	TCE		TcW	BhcE	TCE	TcW		TocE	TcS		TcW			Thoc	
Иn	Da	Ds	Ø	PS	ch	Ē	Ds	E C	E C	ďn	퉙	ä	EQ.	D _m	
													7		
									30				30		
N N N N	L J	N N	EH 33	Ω E	N N	i G	N N	L W	E G	N N	r M		E E	LW	
12		9	8 2	∞	R 12	ω	D 36	36	8	Ç~+	D 36		ω	D 36	
257.2 235		89.3		4			25.2		8		96		6 RG		
33.05		Φ.	104	717	200		N					١0	96		
			1956						1956		1930	1956	1951		
Wallman	Rex Bean		Wa	turkey ranch Walter Bros.	Walter Bros.	Hartman			Elmer Conder		Burkheiser	Elmer Conder	Burton and Blake		Well in locked enclosure. Tape smeared. Pumped recently. Pumping. Obstruction in well above water table. Nearby well pumping.
10-10-57	10-10-57	2-25-58	1-17-58	1-17-58	1-17-58	1-17-58	1- 7-58	1-16-58	1-17-58	1-17-58	1-17-58	1-17-58	1-17-58	1-17-58	Well in locked enclosure. Tape smeared. Pumped recently. Pumping. Obstruction in well above Nearby well pumping.
GS CDE-285	GS	GS	SS	GS	<u>გ</u>	GS	GS	GS	GS	GS	GS	GS	ណ្ឌ ស ស	GS	Well in locke Tape smeared. Pumped recent Pumping. Obstruction i
2N1 CD	397	4G1	TN1	14h	4P2	5R1	(B1	(P1	6P2	109	6R1	6R2	801	802	
								41							

Other data		C,W							H				
sr sh ch st)		77.58			77.14				98.86	0	28.		15.75
Mater level Depth below 1sd (feet)		77.			77.		dry	dry	98	108.0	106.82	dry	15.
ltitude of 1sd (feet)		1.18 2,780	2,780	2,780	2,780	2,775	2,795	2,805	2,780	2,807.0	2,815	2,815	2,580
Suring:		1.18			•				TcE -1.0		•5		0
Measu poi (f		Toc	Na	Na	TcW	Na			TCE		TcN		Bhc
Use		D	Da	P	пn	Da	Dß	Ds	Ch	Ds	Un	Ds	扣
:Yield:Sp. :Use:									4				
		M H	LW	D G	L G	L G	N	N	T 12	N	NN	N	T 20
Well data :Type,:Pump :dish-:type :eter: and :(in.):power		8 A	ω υ	ω υ	D 48		36	D 60	8	D 52	8	12	12
"Type, :Pump :Depth:dish-:type :(ft.): eter: and :(ft.):powei	ğ	8	100	100	8		10.0	60.3	133	79.5	152.2	101.2	
Year Depth: di com- (ft.): e	-Continue	1916	1944						1955				
Owner or user	T. 6 N., R. 5 WContinued	Lingren	W. A. McWherter	Beudette	Beudette	1-17-58 Martin Childer	Campbell		L. L. Shelton		George Air Force	Base George AFB	10-2-57 L. H. Leachman
Date of observation		1-17-58	1-17-58	1-17-58	1-17-58	1-17-58	1-17-58	1-17-58	1-17-58	10-10-57 2-18-18	2-25-58	2-25-58	10-2-57
Source of data and other numbers		GS	SS	GS	GS	GS	GS CDE-208	SS	GS	GS CDE-288	GS	GS.	SS
USGS		6/5-8FI	8#2	8F3	8F4	861	급 42	891	981	10印	10P1	10P2	12A1

								M		M			gen	W
23.05	21.70	51.73			15.23	20.34	dry 113.5	116.91	dry 119.0	115.49	105	104.29		64.2
Taps .5 2,600	2.0 2,600	.5 2,640	2,610	2,610	2,600	5 2,620	2,823.0	.8 2,836.7	2,841.1	2,841.0	2,838.3	.5 2,835	2,800	2,805
Taps.	Tap 2.	TcW.	Na	Na	TheN 0	TcW 1.5		Ter.				Bhc .	Na	Ter
ų	Da	Un	둼	H	Ir	Un	Ds	Un	Ds	D B	Ds	dn	D	Ds
											50			
T 30	LW	N	-1 00	T 30	T 15	N	N N	NN	R	N N	H	N N	$J = \frac{1}{2}$	N
R 14		12			C 11	C 14	148 D	D 45 D	145 D	12	Dr 12	R 12		А
100		128.5			7,4	76.8	100	163.5	109.0		158			70
1954					1957	1948								
10-4-57 S. R. Culbertson	10-4-57 C. L. Culbertson	10-4-57 C. L. Culbertson		H. K. Hedges	H. K. Hedges	U. S. Government	M. L. Ecles E. K. Isaacs		Mitchell					
10-4-57	10-4-57	10-4-57	10-3-57	10-4-57	10-4-57	10-4-57	10-8-57 2-18-18	10-11-57 2-13-18	10-11-57 2-13-18	1958 11-5-53	10-10-57 4- 5-22 2-13-18	11-16-58	1-16-58	1-16-58
L GS	GS GS	GS	SD 1	S GS	SS 1	GS GS	1 GS CDE-291	14ML GS CDE-200	14N1 GS CDE-199	15-1 GS F-15R1	GS ELM CDE-201	GS	GS	GS F-18B1
1211	1212	12P1	1201	1202	1361	13G2	14D1 CI	14M	1411	15-1	16R1	16R2	1701	1861

1													
Other		3		3:									
Mater : level : C Depth C leet		59.81	dry 75.0	64.75	65.84	76.49	(a)	79.42	97.90	88.0		95.08	170.0
Altitude of 1sd (feet)		2,810		.45 2,820	2,820	2,820	2,835	2,835	2,857.0	2,857.6	2,850	2,850	2,830
suring: oint (feet):		0		4.	•5	5		1.0	5.			TapE 1.0	
Measurir point (feet		Tcr		₽c	НСС	Tc	Na	TcN	qđH			TapE	
n nge		nn	Ds	Dan	Un	H		E	Un		Ds	Ir	
Year: Type, Pump: Year: Depth:diam-:type: Yield:Sp.:Use: com-:(ft.): eter: and :(gpm):cap.: pleted: :(in.):power:									63			152	
data Pump : type :) and :(NN	NN	L W	S 3	S 12	ヨエ	J G	N Z	ы	N	T 10	N
"Type, :Pump :diam-:type :eter: and :(in.):powe		D 48	D 36	36	D 8	9 0		R 9	D 12 Dr 12	r 12	S.	R 12	А
Epth:d	art.	62.8	27.4 87	89	100.8	200		350	175 D	Ä	Dr	380	
Year com-	Continue					1957		1957	.,			1947	
Owner or user	T. 6 N., R. 5 WContinued		H. C. Jones	Forest Mays	1-16-58 Forest Mays	1-16-58 Forest Mays		P. Stevens	R. D. Hawley, No. 7 E. H. Richardson	E. H. Richardson	E. H. Richardson	F. Ebert	CDE-307 1917 C. A. Garbutt
Date of observa- tion		1-16-58	1-16-58	1-16-58	1-16-58	1-16-58	1-16-58	1-16-58	1-16-58	2-14-18		1-16-58	7161
Source of data and other		SS	GS CDE-309	GS	GS	GS	GS	GS	GS CDE-205	20-1 CDE-204	20-2 CDE-206	GS	
USGS		6/5-18P1	1981	1961	1902	£26T 4	19E1	1911	20R1	20-1	20-2	INIS	21-1

			<u> </u>	M	၁	ນ					H		W.O	ďΜ	C, W	
dry 153.2	120.0	100.0	122	126.67		126.77	124.3	116.82	-	133.0	113.0	-	108.84	113.27	112.28	
2,900	2,875	2,895	2,875	.7 2,875.6	2,875	2,875		.5 2,875	2,898	2,878.0	2,879.5	2,878.0	2,13 2,880	2.13	1.0 2,880	
				TcN		TcW 0		Нрh	Na				TcW 2	Tc 2	Hcc 1	
Ds			D	Пn	Ps	Пn		H	пn			Ds	വ		Gn	
			27				135				225					
	N	N	3	N N	T 10	N	Ą	$T^{\frac{1}{2}}$		N	Ą	N	T 10		N	
Dr. 6	А	Dr 7	12	16	80	10		R 10	12	Dr 8	12	Dr 12			14	
500		402	200	211.5	190	136.1		1,000		350	595		190		190	
			1947					1949								
J. L. Trummond	A. H. Diamond	W. S. Lehman	Deutschman	1-15-58 Deutschman		Adelanto Community	Service Distr. E. H. Richardson	H. E. Peterson		E. H. Richardson	E. H. Richardson	E. H. Richardson		Service Distr., 1	1-15-58 Adelanto Community 3-5-44 Service Distr.	Losure.
26Q1 GS 10-10-58 CDE-198 4- 5-17	1917	1917	1-15-58	1-15-58	1-15-58	1-15-58	4- 5-17	1-15-58	9-11-58	4-14-18	28-2 CDE-202 2-13-18		4- 7-58	5-22-53	1-15-58 3- 5-44	Well in locked enclosure.
GS :DE-198	26-1 CDE-308	27-1 CDE-207	GS	GS	GS	GS	CDE-203	GS	GS	28-1CDE-290	CDE-202	28-3 CDE-289	SS	F-29HL	GS F-29H2	Vell in 1
2691	26-1	27-1	28E1	28F1	28F2	28F3	,	28M	2801	28-10	28-2	28-3	2911			ج ش

Other		W, Wp		X	3				>	Z
Water level Depth elow 1sd (feet)		107.93	0.96	dry 112.0	(a)	122.43		b164.5	132.47	156.14
Measuring Altitude level point of 1sd Depth (feet): (feet): (feet)		0.35 2,880	2,850	2,945	2,945	1.0 2,945		1.5 2,930	1.5 2,915	.6 2,920
Meası po		m Tes		w	8	Dm TcE	ω	Dm Tap	(D) Tc	n TeW
Sp. U.		D	4	Ds	Q	ā	Ds	A	9	Un
:Yield:Sp.				180						
Well data Type,:Pump Ham-:type eter: and in.):power		10 L G	D N N	12 N N Dr 12 T		14 L 2	12 N N Dr L	c 12 s 3	0 N N	12 N N
Year Depth:dcom- (ft.):	R. 5 WContinued	140		243			144.0	1956 210		162.5
Owner or user	T. 6 N., R. 5 W.	A. L. Stone A. L. Stone Olive A. Stone	J. C. White	N. L. Notterman J. Biescar	4- 7-58 N. L. Notterman	4- 7-58 N. L. Motterman	H. Martin	D. G. Bing	McCurdy	N. Notterman J. M. Scott
Date of observa-		1-15-58 5-15-51 1917	1917	1-14-58	4- 7-58	4- 7-58	10-10-57	10-10-57	4-29-57 McCurdy	10-10-57
Source of data and other numbers		GS F-30J1 CDE-311	30-1 CDE-310	GS CDE-194	GS F-32JJ	GS	GS CDE-197	GS	33-1 F-33L1	34E1 GS 1 CDE-196
USGS		6/5-30RL	30-1	32P1	132K 46	32R2	33AL	3371	33-1	34年1

	po.
	L.

									Ü						
(a) 201.05 215.50		dry	dry 150.0			27.00	46.18	14.64					13.24	dry	
2,915	2,920	2,915	2,925.0		2,470	.5 2,465	.5 2,485	.4 2,475	2,455	2,460	5,460	2,455	1.2 2,450	2,450	
Tcc 0	Na				Na	TheW	TcN	Tc				Na	Tc]		
E E	ď	Ds	Ds		Un	Un	Dm	Dm	Ľ	ä	뉩	ä	un	Ds	
			27												
16 L 1 ¹ / ₂	TO N N	П	D 60 N N		RG 8 T 2	RG 10 N N	C 10 J $1\frac{1}{2}$	c 6 J 3/4	16 T 15	12 T 25	8 T 3	8 T 5	N N 9	3 LH	
562		223.0	25.0		100	100	55	56		100			25.2		
1954					1955	1957		1956							
W. S. Hibbs N. Notterman	N. Notterman		G. O. Erickson E. S. Fisk	T. 7 N., R. 4 W.	G. O. Ramey	G. O. Ramey	Cecil Lindquist	W. Watson	Norman Goss	Norman Goss	Norman Goss	Norman Goss	H. G. Figgs	H. G. Figgs	losure.
10-10-57 4-11-55 11-15-54	10-10-57	9-18-57	9-18-57		4-8-58	4-8-58	4-8-58	6-11-58	6-5-58	6-5-58	6-5-58	6-5-58	6-12-58	6-12-58	in locked enclosure.
S.S.	GS	GS	GS CDE-195		SS	GS	SS	GS	GS	GS	GS.	GS	SS	GS	Well in
34E2 F	34FI	34HL	34J		7/4-501	2 <u>1</u> 5	503	504	6A1	(D)	602	6F1	109	662	a. We

b. Tape smeared.

	Other						Ö		၁				ы		
Water :	Depth elow 1sd (feet)		₹8.6	12.19					₩ 2	11.51	10	า	7		5.12
: :Weasuring: A) + 1 + 1.26	of lsd (feet) it		2,450	2,450	2,450	2,475	2,455	2,480	2,455	2,450	2,450	2,455	2,455	2,480	2,455
ring	(feet):		0	6.						•5					ું.
Measu	point (feet		Tc	Tec	Na	Na	Na			\mathbb{I}^{c}					Tc
	type, :Pump : : : : : : : : : : : : : : : : : : :		ď	Ω	Ir	Un	Ir	B	Ir	Un	Un	Dm	1095 34 Ir	Ir	Un
Well data	: : Type, : Fump : Depth: diam-: type :] : (ft.): eter: and : (11.): power:		N N 9	8 d ½	12 T 15	D 72 L W	14 C 25	D 72 E	72 C 7½	C 16 N N	C 8 N N	$c \ 8 \ J \ 2\frac{1}{2}$	CG 16 T 10	16 T 75	N N 84
•• ••	Year Depth: com- (ft.):	4 WContinued	50.6			1947			79	19257 110	1945 40	1954 108	1951 107		
	Owner or user	T. 7 N., R. 4 W	H. G. Figgs	Norman Goss	Norman Goss	Ernest Petrě	H. G. Figgs	Mrs. L. Rhinehardt	E. G. Mudge	M. K. Levis	M. K. Lewis	M. K. Lewis	M. K. Lewis	Frank Delfino	Frank Delfino
e Date	ල්		6-12-58	6-12-58	6-12-58	6-11-58	6-11-58	6-11-58	6-11-58	6-12-58	6-12-58	6-12-58	6-12-58	6- 4-58	6-10-58
Source	of data and other numbers		S	GS	S	SS	SS	SS	SS	GS	GS	85	GS	GS	SS
	USGS		7/4-633	†599	665	CFD	6H2	159 48	632	611	612	6L3	4T9	ТМЭ	6M2

ت ت			H				ьī							Ö		O	
17.51	ተር	14	90.44	21.96		25.02	18	26.88		41.76	64	23 34.0	18	dry	26.75		
2,460	2,465	2,465	2,485	2,475	2,490	2,475	2,470	C24'8	2,465	2,480	2,490	2,470	2,470	2,1,65	5,465	594,5	2,465
10			•5	20,3		1.5		2.0		•5					ď		
Ic			Tc	T _C	Na	Ic	Na	Tc		Tcc	Na		Na		The		Na
H	김	H	A	呂	E C	Dm	昌	Da	뎝	D	占	II	呂	Ds	un	Ir	E E
													7				
T 15	C 7½	T 25	TI	근	(Z)	L W	田田	ria Et	H H	I W	J 2	C 15	c 3/4	N	N	T 15	T 3
72	D 120	c 16	C 12	D 48	9 0	B 9	8			12	8 5	D 72 D	R 24	D 48	C 12	C 12	8 2
8	50	150	65	49.3	99	48.1	36				83	04	30	5.0		100	
9461	1908	1956	1947		1954	1927	1954		1956		1957	1952	1954	1938		1958	
A. P. Schwarz	M. K. Lewis	M. K. Lewis	J. Leckwark	formerly Wheeler	William Watson	A. H. Crawford	J. C. Tobin	Horning	C. C. Graham	Skies?	F. M. Pruitt	E. R. Smith P. Herlick	E. R. Smith	C. E. Herbold	C. E. Herbold	C. E. Herbold	C. E. Herbold
6- 6-58	6-12-58	6-12-58	6-11-58	6-11-58	6-11-58	6-11-58	6-11-58	6-11-58	6-11-58	6- 4-58	6- 6-58	6- 4-58 1917	6- 4-58	6- 6-58	6- 5-58	6- 5-58	6- 5-58
GS	GS	SS	GS	GS	GS	SS	GS	GS	GS	GS	GS	GS CDE-305	GS	GS	GS	GS	GS
(P1	691	692	6R1	6R2	6R3	4550	6R5	6R6	6R7	TAI	7A2	7.81	7B2	707	702	703	707

Other						O							M _D
Water level Depth oelow lsd (feet)			15.79	(a)			417.25	12.82			50	67.58	36.07 22.00 34.
Altitude of 1sd (feet)		2,470	2,470	2,500	2,500	2,470	2,470	2,470	2,475	2,470	2,485	2,510	2,330
sasuring: point : (feet):			4.0				رن رن	۲ .5				1.5	1.5
.Meas:			Tc		Na		TheE	ThcW			Na	Hpb	Tc
use		Ir	Un		Da	Ħ	H	占	Ä	H	B	Ir	D
Well data Type, :Pump : : : : : : : : : : : : : : : : : : :													
data Pump type and power		T 5	N	臼	H H	T 15	T 30	T 15	T 15	T 10	S 7½	T 10	L W
			10		9	C 12	16	16	16	16	C 12	C 12	De 6
fear :Deptl com-:(ft.	eđ		73.5		901	210	171	180			100	100	43
Year : com-:	4 WContinued					1954					1938	1929	tum
Owner or u	T. 7 N., R. 4 W.	Frank Delfino	Frank Delfino	E. H. Schlueter	Leo Fosburgh	Frank Delfino	G. H. Kunsberger	Chris Beck	lrs. M. E. Von Dettum E. J. Traus				
Date of the tion		6- 4-58	6-11-58	6- 4-58	6- 4-58	6- 4-58	6- 4-58	6- 4-58	6- 4-58	6- 4-58	5-28-58	5-28-58	6- 459
Source of data and other numbers		GS	GS	GS	GS.	SS	SS	SS	SS	SS	S	GS	GS M-14 DrT-93
USGS		194-4/2	762	THL	7E2	ZY ZY	00	TNI	TP1	TP2	701	702	743

85	58	ч													
	87.26	13.21	8	45		. 56	59.95	8.14	23		7.85	62.17	dry 55.0	24.7	
2,525	2,530	3,250	2,540	2,495	2,500	2,515	2,515	2,475	2,475	2,475	2,475	2,520	2,525	2,495	
	1.0	1.5					5.	-3.6			1.2	ထ္		1.2	
Na	Jc	Ter	Na	Na	₹,	Na	Jc	Hcc	Na		Tc	Tec		Tc	
Da	P	dn	D	Da	Ds	Pa	D	E C	뷥	E C	百	Da	Ds	Ir	
													546		
J 1	T T	N	را 1	T 3/4	N	ر ب	T 3	J 4	T 10	<u>ა</u>	rin C	T M	E O	T 15	
9 0	C,R 6	8† a 2	9 0	හ හ	D 72	0 10	10	8	c 12	G 8	හ ව	C 10	8 <u>7</u>	R 12	
96	300	16.	110	8	35	108	8	040	217	30	30	100	60 270	69	
1956	1951		1955	1945	1938	1957	1938	1953	1947	1956	1956	1950			
E. Robinson	Fred McCart		W. F. Relaford	George Sibert	W. Bender	W. Bender	Floyd Barber	J. M. Harris	F. J. Harris Harold Smith	Ethel Harper	N. G. Relaford	W. E. Cole	F. C. Abbott	J. H. Cahill	osure.
6- 4-58	6- 4-58	4- 8-58	5-28-58	5-28-58	5-28-58	5-28-58	5-28-58	5-27-58	5-27-58 6- 7-47	5-27-58	5-28-58	5-28-58	6-11-58	5-28-58	Well in locked enclosure.
GS	GS	GS	GS	SS	S S	GS	GS	85	65 85	GS	GS S	GS	GS CDE-306	GS	Tell in l
801	802	1337	18A1	18B1	18B2	18B3	18B4	1801	1802	1803	1804	1861	18K1	1811	a. W
	GS 6-4-58 E. Robinson 1956 96 C 6 J 1 Dm Na 2,525	GS 6- 4-58 E. Robinson 1956 96 C 6 J 1 Dm Na 2,525 GS 6- 4-58 Fred McCart 1951 106 C,R 6 T 1 Dm Tc 1.0 2,530	GS 6- 4-58 E. Robinson 1956 96 C 6 J 1 Dm Na 2,525 GS 6- 4-58 Fred McCart 1951 106 C,R 6 T 1 Dm Tc 1.0 2,530 GS 4- 8-58 16.7 D 48 N N Un Tcr 1.5 3,250	GS 6-4-58 E. Robinson 1956 96 C 6 J 1 Dm Na 2,525 GS 6-4-58 Fred McCart 1951 106 C,R 6 T 1 Dm Tc 1.0 2,530 GS 4-8-58	GS 6- 4-58 E. Robinson 1956 96 C 6 J 1 Dm Na 2,525 GS 6- 4-58 Fred McCart 1951 106 C,R 6 T 1 Dm Tc 1.0 2,530 1 GS 4- 8-58 W. F. Relaford 1955 110 C 6 J 1 Dm Na 2,540 1 GS 5-28-58 George Sibert 1945 90 C 8 T 3/4 Dm Na 2,495	GS 6- 4-58 E. Robinson 1956 96 C 6 J 1 Dm Na 2,525 GS 6- 4-58 Fred McCart 1951 106 C,R 6 T 1 Dm Tc 1.0 2,530 GS 4- 8-58 I GS 5-28-58 W. F. Relaford 1955 110 C 6 J 1 Dm Na 2,540 GS 5-28-58 George Sibert 1945 90 C 8 T 3/4 Dm Na 2,495 GS 5-28-58 W. Bender 1938 35 D 72 N N Ds * 2,500	GS 6- 4-58 Fred McCart 1956 96 C 6 J 1 Dm Na 2,525 GS 6- 4-58 Fred McCart 1951 106 C,R 6 T 1 Dm Tcr 1.0 2,530 1 GS 4- 8-58 M. F. Relaford 1955 110 C 6 J 1 Dm Na 2,540 2 GS 5-28-58 George Sibert 1945 90 C 8 T 3/4 Dm Na 2,495 2 GS 5-28-58 W. Bender 1938 35 D 72 N N Dm Na 2,500 3 GS 5-28-58 W. Bender 1957 108 C 10 J 1 Dm Na Ra 2,500	GS 6- 4-58 Fred McCart 1956 96 C 6 7 1 Dm Na 7c 1.05 2.525 GS 6- 4-58 Fred McCart 1951 106 C,R 6 T 1 Dm Tc 1.0 2,525 1 GS 4- 8-58 W. F. Relaford 1955 110 C 6 J 1 Dm Na Tc 2,540 2 GS 5-28-58 W. Bendert 1945 90 C 8 T 3/4 Dm Na 2,495 3 GS 5-28-58 W. Bendert 1938 35 D 72 N N Dm Na 2,540 4 GS 5-28-58 W. Bendert 1938 80 10 1 1 N N 2,515	GS 6- 4-58 F. Robinson 1956 96 C 6 J 1 Dm Na 2,525 GS 6- 4-58 Fred McCart 1951 106 C,R 6 T 1 Dm Tc 1.0 2,525 1 GS 4- 8-58 M. F. Relaford 1955 110 C 6 J 1 Dm Na Tcr 1.5 3,500 1 GS 5-28-58 W. Bender 1945 90 C 8 T 3/4 Dm Na 2,540 2 GS 5-28-58 W. Bender 1938 35 D 72 N N Dm Na 2,540 3 GS 5-28-58 W. Bender 1938 35 D 72 N N Dm Na 2,515 4 GS 5-28-58 W. Bender 1938 80 10 T N Dm C 5,515 4 GS 5-28-58 Floyd Barber 1953 W C B	GS 6- 4-58 E. Robinson 1956 96 C 6 J Dm Na 2,525 GS 6- 4-58 Fred McCart 1951 106 C,R 6 T T T 1.0 2,526 1 GS 5-28-58 W. F. Relaford 1955 110 C 6 J Dm Tc 1.0 2,526 1 GS 5-28-58 W. Bender 1945 90 C 8 T 3/4 Dm Na 2,495 2 GS 5-28-58 W. Bender 1938 35 D 72 N N Dm Na 2,500 4 GS 5-28-58 W. Bender 1957 108 C 10 J 1 Dm Na 2,515 4 GS 5-28-58 W. Harris 1953 40 C 8 J 1 Dm Tc 2,515 5 GS 5-27-58 Y. Harris 1953 40 C 12 T 10 T 10 T 10	GS 6- 4-58 E. Robinson 1956 96 C 6 J 1 Dm Na 2,525 GS 6- 4-58 Fred McCart 1951 106 C,R 6 T 1 Dm Tc 1.0 2,530 1 GS 5-28-58 W. F. Relaford 1957 110 C 6 J 1 Dm Na 2,540 2 GS 5-28-58 W. Bender 1945 90 C 8 T 3/4 Dm Na 2,540 3 GS 5-28-58 W. Bender 1938 35 D 72 N M Dm Na 2,540 4 GS 5-28-58 W. Bender 1957 108 C 10 J 1 Dm Na 2,550 4 GS 5-28-58 W. Bender 1938 80 10 J 1 Dm Na 2,515 5 GS 5-28-58 Floyd Barber 1953 W C 12 J 2 N N S 2,475<	GS 6- 4-58 F. Robinson 1956 96 C 6 J 1 Dm Na 2,525 GS 6- 4-58 Fred McCart 1951 106 C,R 6 T 1 Dm Tc 1.0 2,526 1 GS 6- 4-58 W. F. Relaford 1957 110 C 6 J 1 Dm Tcr 1.5 3,250 1 1 GS 5-28-58 W. Bender 1945 90 C 8 T 3/4 Dm Na 2,495 4 2 GS 5-28-58 W. Bender 1936 C 10 J 1 Dm Na 2,540 4 4 GS 5-28-58 W. Bender 1936 C 10 J 1 Dm Na 2,540 4 4 GS 5-28-58 W. Bender 1936 R 0 C 1 J 1 T 2 2,515 5 2,515 5 5 2-28-58 W. Harris 1953 40 C 8	GS 6- 4-58 F. Robinson 1956 96 C 6 J 1 Dm Na 2,525 GS 4- 8-58 Fred McCart 1951 106 c,8 6 T 1 Dm Tc 1.0 2,530 1 GS 4- 8-58 W. F. Relaford 1955 110 C 6 J 1 Dm Tc 1.5 3,250 2 GS 5-28-58 W. Bender 1945 90 C 8 T 3/4 Dm Na 2,495 2 GS 5-28-58 W. Bender 1936 35 D 72 N N Dm Na 2,495 4 GS 5-28-58 W. Bender 1937 108 C 10 J 1 Dm Na 2,540 4 GS 5-28-58 F. Loyd Barber 1938 80 10 T 3 Na C 5 2,515 5 GS 5-27-58 F. J. Harris 1957 L 7 T 1 Na C 6 <t< td=""><td>GS 6- 4-58 F. Robinson 1956 96 C 6 J 1 Dm Na 2,525 GS 4- 4-58 Fred McCart 1951 106 C,8 6 T 1 Dm Tc 1.0 2,525 GS 4- 8-58 W. F. Relaford 1957 110 C 6 J 1 Dm Tc 1.5 3,550 1 GS 5-28-58 W. F. Relaford 1945 90 C 8 T 3/4 Dm Na 2,495 1 GS 5-28-58 W. Bender 1997 108 C 10 J 1 Dm Na 2,500 1 GS 5-28-58 N. Bender 1997 108 C 10 J 1 Dm Na 2,515 1 GS 5-28-58 N. Bender 1997 NB C 10 J 1 Dm NB 2,515 1 GS 5-28-58 N. Harris 1997 NB C 1 T 2 NB NB <td< td=""><td>GS 6-4-58 E. Robinson 1956 96 C 6 J 1 Dm Na 2,525 GS 6-4-58 Fred McCart 1971 106 C,R 6 T 1 Dm TC 1.0 2,525 GS 4-8-58 W. F. Ralaford 1955 110 C 6 J 1 Dm TCr 1.5 3,250 1 GS 5-28-58 W. Bender 1945 90 C 8 T 3/4 Dm Na 2,540 2 GS 5-28-58 W. Bender 1957 108 C 10 J 1 Dm Na 2,540 3 GS 5-28-58 W. Bender 1957 108 C 10 J 1 Dm Na 2,540 4 GS 5-28-58 W. Bender 1957 108 C 10 J 1 Dm Na 2,540 5 GS 5-28-58 W. Harris 1957 21 T 10 T 10 T 10 Na N</td></td<></td></t<>	GS 6- 4-58 F. Robinson 1956 96 C 6 J 1 Dm Na 2,525 GS 4- 4-58 Fred McCart 1951 106 C,8 6 T 1 Dm Tc 1.0 2,525 GS 4- 8-58 W. F. Relaford 1957 110 C 6 J 1 Dm Tc 1.5 3,550 1 GS 5-28-58 W. F. Relaford 1945 90 C 8 T 3/4 Dm Na 2,495 1 GS 5-28-58 W. Bender 1997 108 C 10 J 1 Dm Na 2,500 1 GS 5-28-58 N. Bender 1997 108 C 10 J 1 Dm Na 2,515 1 GS 5-28-58 N. Bender 1997 NB C 10 J 1 Dm NB 2,515 1 GS 5-28-58 N. Harris 1997 NB C 1 T 2 NB NB <td< td=""><td>GS 6-4-58 E. Robinson 1956 96 C 6 J 1 Dm Na 2,525 GS 6-4-58 Fred McCart 1971 106 C,R 6 T 1 Dm TC 1.0 2,525 GS 4-8-58 W. F. Ralaford 1955 110 C 6 J 1 Dm TCr 1.5 3,250 1 GS 5-28-58 W. Bender 1945 90 C 8 T 3/4 Dm Na 2,540 2 GS 5-28-58 W. Bender 1957 108 C 10 J 1 Dm Na 2,540 3 GS 5-28-58 W. Bender 1957 108 C 10 J 1 Dm Na 2,540 4 GS 5-28-58 W. Bender 1957 108 C 10 J 1 Dm Na 2,540 5 GS 5-28-58 W. Harris 1957 21 T 10 T 10 T 10 Na N</td></td<>	GS 6-4-58 E. Robinson 1956 96 C 6 J 1 Dm Na 2,525 GS 6-4-58 Fred McCart 1971 106 C,R 6 T 1 Dm TC 1.0 2,525 GS 4-8-58 W. F. Ralaford 1955 110 C 6 J 1 Dm TCr 1.5 3,250 1 GS 5-28-58 W. Bender 1945 90 C 8 T 3/4 Dm Na 2,540 2 GS 5-28-58 W. Bender 1957 108 C 10 J 1 Dm Na 2,540 3 GS 5-28-58 W. Bender 1957 108 C 10 J 1 Dm Na 2,540 4 GS 5-28-58 W. Bender 1957 108 C 10 J 1 Dm Na 2,540 5 GS 5-28-58 W. Harris 1957 21 T 10 T 10 T 10 Na N

d. Pumping.

Water :	below 1sd data (feet)		14.52	(e)				26.87		44.13		(a) WP 69.3 60.0			(1
	of 1sd De (feet) belo			2,495 (e	2,520	2,515	2,495	2,515	2,510	2,530	2,530	2,550 (6 6 6		2,570	2,570 (a)
	point of 1sd (feet)		Tc 0.4 2,495	CU	Na S	Na 2	Na	Tbc-12.0		Hpbs 3.0	Na	Tc 0		Na	Na
7	Use		Ç	Ir	Da	E	Un	S	D	E C	D	ង			Den
	Type, Pump : : : : : : : : : : : : : : : : : : :											C	3		
data Anta	Fump type and		c 5	s 10	T 3	H 3	T 72	T 5	H R	S 7½	T J	м Б	د	T J	
אסף (נסעו	: Type, :Pump :Depth:diam-:type :(ft.): eter: and : :(in.):powel		D 72	c 12		C 12	8	D 120	Dc 14	20	9	6	<u> </u>	9	
	Depth (ft.)	ed ed	09	100					24	73	35	243	5/0		
	Year I com-	4 W Continued		1930								1912			
	Owner or user	T. 7 N., R. h W	M. R. Orebaugh	M. R. Orebaugh	A. Smith	M. V. Crosby	Adene	Lore Latitschg	Adene	W. O. Potapov	Jessie Bates	ley	E. B. Rowley	B. W. Craig	Stedman
	Date of observation		5-27-58	5-27-58	5-27-58	5-27-58	5-27-58 Adene	5-23-58	5-28-58	5-27-58	5-29-58	5-29-58 4- 6-32	1917	5-29-58	5-29-58 Stedman
	Scurce of data and other numbers		SS	SS	SS	gs	GS	GS	GS	GS	83	GS M-13	303	GS	GS
	USGS number		T/4-18N1	18P1	18P2	18P3	1901	超 52	1981	19F2	19F3	1961		1970	19K2
1		1	(

					Μ̈́p				ы	ы					ďΜ
	(a)	119.09	43.70		27		*	a27	106	96	114.35	(p)	30.6	92.0	24.2
2,580	2,580	2,600	2,520	2,520	2,533.8	2,560	2,565	2,540	2,600	2,590	2,600	2,640	2,565	2,610	2,515
		1.8	5.		1.0						1.1	0			ω.
Na		Ic	ThcW	Na	Na Tcc	Na	Na		Na	Na	Thc	T _C			Hpb
D	D	Dm	Un	ŀ	됩김	Dm	昌	Dm	P	Da	呂	Da			
										8			108		
T 12	妇	L 2	T 5	T 10	T 12	e E	TI	T J	L 1	L 1	හ. ආ	F ×	೮		
9		0 16	12	ت ت	Dc 8	9	80	c 12	9 0	9 0	C 12	9	Dr 12		
		128.4	96	108	125	125		100	136	112	130		225	110	
1957		1933		1950	1920	1948		1955	1950	1951	1958				
S. Pope		Elma Dougherty	Sonne	2-28-58 B. H. Corrington	5-29-58 W. E. Bolton 9- 4-30	Harley Henderson	Jessie Bates	Willard	5-29-58 J. B. Hammond	M. L. Kinney	Gladys Rosenburg	Wadsworth	19-1 CDE-278 4-18-17 C. A. Poole	1918 E. B. Rowley	2-23-32 Nofferman Bros.
5-29-58 S. Pope	5-29-58	5-29-58	5-23-58	2-28-58	5-29-58 9- 4-30	5-28-58	5-28-58	5-29-58 Willard	5-29-58	5-29-58	5-29-58	5-29-58	4-18-17	1918	M-9 2-23-32 Noffer Well in locked enclosure.
GS	85	GS	GS	GS	GS M-8	GS	GS	SS	GS	GS	GS	GS	3DE-278	19-2 CDE-304	M-9 I ni II:
19K3	19K4	19K5	19ML	TNGT	19N2	19P1	19P2	19P3	1961	1992	1993	19R1	19-1 (19-2 (19-3 M-9

Tape smeared. Obstruction in well above water level.

р. е

	Other								W, WP				
Water :	sd C		b180	(g)	(a)	(a)	122.85	104.16	58.95 57.0 54.0	18.88	15.0		dry
	point of led (feet) b		3,440	2,700	2,725	2,625	2,610	2,590	2,561.5	2,530	2,520	2,590	2,580
ring	oint (feet):		•				0.5	5.	9.9	5			
Measu	point (feet						TcW	TcW	권 고	Tc		Na	
	Use		D	un	D	2	E C	ā	d d	Da	Ds	D	Ds
	Type, :Pump : : : : : : : : : : : : : : : : : : :								135				
lata	Pump type and		L G		日田		L 1	1	ZZ	⊢	NON	LW	N
Well data	Type, :Pump : diam-:type : eter: and : (in.):power:		10	9 0		8 2	c 12	හ ව	थ ः य	10	마 12	D 20	D 48
		e d	256	880	285	195	144	160	119.9	09	20	011	14.7
	Year Depth com-	4 WContinued		g1958			1956	1955		1957			
	Owner or user	T. 7 N., R. 4 W	3-14-58 F. L. Chambers	Bernard Gollner	Allen Orcutt	J. H. Hansen	Rupert Justus	4-10-58 Carol Edenburn	W. Watkins	200	Minerals Co. W. Watkins	Vernon Chambers	
7 d + d7	ල		3-14-58	4-10-58	4-10-58	4-10-58	4-10-58	4-10-58	3-25-58 9- 4-30 1917	4-11-58	4-11-58	4-10-58	4-10-58
Source			GS	GS	GS	GS	GS	GS	GS M-7 CDE-276	GS	GS CDE-277	GS	GS
	USGS		7/4-25RL	30A1	30A2	30B1	30B2	£go£ 54	3001	30DL	3012	30L1	30L2

															1
						CoL				ບ	CL		-	A	Mo
22.92			29.47			72.44	35.00		62.11	22.01	- 26	221.46		105	97.3
2,560	2,535	2,535	2,540	2,530	2,540	2,560	2,550	2,545	2,580	2,560	2,615	2,745		Ter -1.0 2,478.4	.9 2,522.4
1.0			.27			5.	•5		5.	0		.5		-1.0	6
Tcc	Na	Na	TCE	Na		Tes	Thc	Na	TCE	Ter		HpbN		Ter	Tcr
Dm	D _m	nn	E C	D	눠	Ir	Un	un	昌	H	P	ä		뇝	
				5											
J 3/4	~!\\\	1/3	3/4	5	5	5	.	-	Δ.	10	125	щ		30	
12 J	8	8 T	8 J	H	ರ	8	12 T	T 9	ы 1	T 09	E 9	8 F		E	
			RG			Ö					೮			PH.	
	04		8		040	8				1. 11	131	256		428	
			1954			1956					1951	1957			
Creson	Creson		B. Ickes	Detridge	Allison	4- 8-58 A. C. Frisbee		Carl Metzermacher		J. E. Barr	William Hawson	Pauline M. Peterson	T. 7 N., R. 5 W.	Frank Delfino Werrel	
4-10-58 Creson	4-11-58 Creson	4-11-58	4-10-58	4- 8-58	4- 8-58	4- 8-58	4- 8-58	4- 8-58	4- 8-58	4- 8-58	4- 8-58	4- 8-58		2-27-58	7- 6-32
GS S	GS	89	GS	GS	GS	GS	GS	GS	GS	SS	GS	GS		GS M-101	2-1 M-106
30MI	30M2	30M3	30NL	3171	3102	3157	31E2	31E3	31F1	31ML	31P1	3101		7/5- 181	2-1
								2 -	/						

2-1 M-106 7-6-32
a. Well in locked enclosure.
b. Tape smeared.
g. Being drilled.

Water: level: Depth: Lopth: low lsd: (feet):		dry 300	150.00	80.9	20.9	143	132.60 132	276.55		dry	dry	70
Measuring Altitude level point of 18d Depth (feet) (feet) (feet)		2,712	0.8 2,780	.2 2,575	1.9 2,575	2,715	.5 2,705	TcN -1.0 2,705	2,700	2,775	2,665	2,70
Mea		Ds	Dm TcE Tc	Dn Tc	Dm Tc		Un Ter	Un Tel	Ds	Ds	Ds	
Year: Type, Pump: com- Depth:diam-:type :Yield:Sp.: pleted: (ft.): eter: and: (gpm):cap.:Use: (ft.): power:	pg	54.5 R 8 N N 412	178 C 6 L W	30 CB CG	30 68 66	153	135.8 D 36 N N 138	296.0 C 12 N N	235 Dr 12 N N	58.2 D N N	91.3 D 36 N N	D
	WContinue		ďc	1956	1956							
Owner or user	T. 7 N., R. 5 WContinued	8-27-58 U. S. Government	Bob's Smoke Shop C. W. Berg	W. E. Relaford	R. E. Taylor				Gwyne			
Date of observation		8-27-58	2-27-58	5-27-58	5-27-58	1919	2-26-58	2-27-58		2-26-58	2-26-58	52
Source of data and other numbers		ಬ	GS	GS	GS	14-1 DGT-94	GS DGT-95	GS	15-1 CDE-283	GS	GS	BLM
USGS		1/5- 5DI	TNL	1341	13A2	1-71	15P1	15R1	15-1	18M	20P1	21-1

W, Wp	M		W								ч		·	Mp	
dry	95.98	dry	106.76	%	dry	(a)	430.47	(q)	419.62	22.09,	7.32	14.50	13.25	6.47	
2,715	1.10 2,715	2,715	2,710.4	2,710	2,700	2,505	2,505	2,505	2,505	2,520	2,505	2,510	2,510	2,506.8	
	1.10		7.				0		5	2.0	•	1.0	2.0	ئ ئ	
	Tcc		Ter				Ter		Ter	Tpc	BhcN	TCE	Tcc	Ter	
Ds	r n	Ds	ď		Ds	P	H	ä	ä	Ä	ង	Un	Ä	r n	
											24	477	30		
									180		1250	745	450		
N N	N	N. N	N				T 10	H 3	T 5	T W	T 10	C 5	Ö	ы ы	
D 36	c 12	D 36	D 36	D 48	р 60		72	12	91	12	tl 50	92 a	c 14	76	
88.2 I	0	88.8 I													
88		88	127.5	92	710		90	55	53	30	121	36	8		
								1951			1951	1938			
				Israel Kulder	Israel Kulder	Lash	Sonne	Sonne	Parsons	н. н. ніл	н. н. ніл	H. H. Hill, well l	H. H. Hill, well 2	B. H. Corrington	Losure.
2-26-58	4- 7-58	2-26-58	4- 7-58	52	52	5-23-58	5-23-58	5-23-58	5-23-58	2-28-58	2-28-58	2-28-58	2-28-58	2-28-58	Well in locked enclosure. Tape smeared. Pumping.
GS M-7c	GS M-7ca	SS	GS M-7b	HLM	BLM	GS	GS	GS	GS	GS	GS	GS	SS	GS M-12b	Well in locke Tape smeared. Pumping.
LNZZ	22N2	2201	22R1	22-1	22-2	24円	TC 4/2	24.72	2433	TN 72	24P1	24P2	24P3	24R1	a. We da. Pu

1	4 a														
	Other data		Wp		WP	Wp	ďΜ	ы			ы			ы	ы
Water	level Depth elow 1sd (feet)		4.67		8.0	17.2	28.6		5.77	7.05	16.41	7.36	7.72	.65	.72
•	Measuring Altitude level point of 1sd Depth (feet) (feet) (feet)		2,504.4	2,515	2,507.4	2,508.6	2,513.3	2,515	2,510	2,510	2,510	2,505	2,515	2,510	2,510
	suring: A coint (feet):		0.0		0	9.	S.		1.5	5	0	3.5	5.	0	•5
	Measurin point (feet		Ter	Na	Ter	Tec	Tcc	Na	Ter	TrcS	TCE	Ter	TpbN	TcW	TcW
	Year : Type, :Pump : : : Com- : (ft.): eter: and :(gpm):cap. : pleted: :(in.):power: : :		a a a	D _m				E C	ഗ	nn	ch	H	ä	Un	un
	: Sp.										2	53	•••		
	:Yield:Sp.										96	630	1143		
	Type, :Pump : :diam : type : eter: and : (in.):power:		N	ن اتا				田田	LW	N	N	되	T 15	3	0 2
	Type, Pump: diam: type eter: and eter: (in.):powe		92 a	9 o				ت ت	12	77	∞	C 14	C 14	14	12
	Year : Type, :Pump com- :(ft.): eter: and oleted: :(in.):power								10.0	9.8	47.5			40.2	36.2
	r De	nued		88				195	Ä			8	06 1		
	Year com-	Conti		1953							1951		1941	1952	1951
	Owner or user	T. 7 N., R. 5 W Continued	B. H. Corrington	B. H. Corrington			Nofferman Bros.	L. L. Weiss	L. L. Weiss	L. L. Weiss	L. L. Weiss	H. Hill, well 3	R. M. Hillwig	L. L. Weiss	L. L. Weiss
	Date of observation		2-28-58 9- 7-32	2-28-58	9- 7-32	9- 2-32	3-20-31	4-11-58	4-11-58	4-11-58	4-11-58	2-28-58	4-11-58	4-11-58	4-11-58
	Source of data and other numbers		GS M-12a	GS	M-12	M-11	M-10	SĐ	GS	GS	GS	GS	CS	SS	GS
	USGS		7/5-24R2	24R3	24-1	24-2	24-3	25A1	25A2	25A3	25A4	2501	2561	2562	2563
	nur		1/5-				58								

ы		ы	ы							Wp				ы	ы	
7.24	7.28	6.71	09.6	21.43	5.53	10.88	11.32	8.75	11.22	15.20		9.77	9.30		7.43	12.12
2,515	.2,515	2,515	2,520	2,530	2,515	2,520	2,525	2,525	2,530	2,530	2,525	2,530	2,530	2,525	2,525	2,530
Ter 0	EpbW 1,0	TorE 0	TerE .5	TCE -6.0	TcW -4.5	Tcr 0	Tc -4.5	TcN 0	TcN 1.5	Tcr 0 Tc -13.5	Na	TcN -6.5	Tcr 0		TerW .5	Ter 0
Un	Ir	Un	B	Da	H	E E	Den	Un	E C	Un	Dm	Un	D D	45 Ir	ង	Ir
NN	T 20	C 2	c 5	4.7	c 5	J 3/4	S	N	T 10	೮	c 2	N N	ਜ <u>਼</u> ਜ਼	$c 7\frac{1}{2} 630 4$	0 10	H
C 14	12	14	C 14	10		36	12	8	RG 12	D 36	12	12	99	C 12	CG 12.	72
34.2		84	96	108	140	50	35	10.2	150	32.4				75	09	
1950	1957	1951	1951	1947										1928	1951	
L. L. Weiss	L. L. Weiss	L. L. Weiss	R. M. Hillw1g	R. R. Jenkins	A. T. Davis	A. T. Davis	Donald Venson	Rosenburg	Rosenburg		Rosenburg	Rosenburg	Rosenburg	A. Gysber	A. Gysber	Mohart Land Co.
4-11-58	4-11-58	4-11-58	4-11-58	4-10-58	4-10-58	4- 7-58	4-10-58	4-10-58	4-10-58	4-11-58	4-10-58	4-10-58	4-10-58	4-11-58	4-1058	4-10-58
GS	GS	SS	SS	GS	GS	GS	GS	GS	GS	GS M-6	GS	GS	GS	GS	89	SS
25Glt	25G5	2566	25FL	25JJ	2532	2513	25,34	2535	25,16	2537	25KL	25K2	25K3	25K4	25K5	2501

Other data						М						
Water level Depth (feet)			27.14	11.91	11.14	168.67	171.0		dry	dry	dry	dry
Measuring Altitude level point of 1sd Depth Other (feet) below 1sd data (feet)		2,530	2,540	2,530	2,525		2,737.0	2,740	2,725	2,724.0	2,710	2,725
n P		Na	TerW 0	Tcr 0	Tes .5	Ter Q						
Use		뇝	n n	김	Dm	un		un	Ds	Ds	Ds	Ds
Year : Type, :Pump : : : Com- : (ft.): eter: and :(gpm):cap. : : : : : : : : : : : : : : : : : : :	Continued	T 10	82.4 38 N N	148 T E	14 1	D 36 N N	D N N	172.5 D 36 N N	101.6 36 N N	26.0 36 N N N N N	0.00 N N U D N N N D N N D N N D N D N D N D	78.2 D 48 N N D N N
Owner or user	T. 7 N., R. 5 WContinued	4-10-58 Mohart Land Co.		Mohart Land Co.	Mohart Land Co.		2-18-18 A. Edwards				Kirkpatrick	J. M. Peden
Date of observe- tion		4-10-58	4-10-58	4-10-58	4-10-58	4- 7-58	2-18-18	2-28-58	2-27-58	2-27-58 2-18-18	2-25-58	2-25-58
Source of data and other numbers		SS	SS	GS	GS	SS	M- (a CDE-279	GS	GS	GS CDE-286	GS CDE-281	GS CDE-280
USGS		7/5-25@	25R1	25R2	25R3	26a	60	26B2	2601	26M	2701	27HL

													D		
dry	81.0	dry	dry		02.99	143.77	(p)	10.65	2.84	14	8.93	2.11	17	12.91	
2,735	2,718.3	2,700	2,715	2,725	2,740	2,735	2,750	2,530	2,525	2,535	2,530	2,535	2,545	2,555	
					TCE .5	TcN 2.5		TheS 0	Tcc 0	Na	Ter .5	TcS 0		Tf -12	
Ds		Ds	Ds	Ds	Un	Un	un	ų	눠	Un	Ir	ដ	占	Dm	
														810	
N	N N	N	N	N	N	NN	NN	T 7	c 7½	田田	日	C 7½	c 7½	C 10	
D 36	А	D 48	р 36	Dr 12	D 36	c 12	48	12	12		72	14	14	12	
4.57		62.5	53.8	230 I	75.8	2,642	100.0	96				50	65	52	
	W. Warren			YMCA				Allison	John Pearson	Earl Bates	Earl Bates	John Pearson	4- 8-58 John Pearson	R. H. Antibus	
2-25-58	2-18-17 4-5-22	2-26-58	2-26-58		2-26-58	2-26-58	2-25-58	4- 8-58	4- 8-58	4- 8-58	4- 8-58	4- 8-58	4- 8-58	.4- 8-58	
GS	27-1 CDE-282 BLM	85	SS	31-1 CDE-284	SS	SS	GS	GS	GS	GS	GS	SS	GS	GS	
LINZ	27-1	28E1	28HL	31-1	3261	32L1	34P1	36A1	36F1	36п	36H2	36KL	3691	36R1	

b. Tape smeared.

	Other data			C			O		α̃M		C, Wp	S	
Water :	Depth below 1sd (feet)		24.67	dry 19	50	09	dry	61	dry 50.5	73.34	dry 18.2 52	21.09	18
Altitude of 18d (feet)			2,395	2,405	2,415	2,415	2,415	5,445	2,450	०५५ ट	2,415	2,400	2,400
Measuring: Altitude of lad (feet); (feet);			Tcr 2.0							TcN 0	Ter -1.0	Tcr 0	
Well data	Use.		Da	Ds	H	Ir	Ds	Un	Ds	Dm	DB	Den	Un
	Yield Sp. Use (gpm) cap.					0006		250					
	1 541		c 15	N N	T 20	T G	C	N	T W	5	ы О	7 17	N
	:Type,:Pump:diam::type eter: and (in.):power		D 72	Д	16	c 12	72	12	00	Φ	D 72	D 48	N
				0 23	90	132	04	140	88.0	84.0	30.0	25	20
	Year Depth completed (ft.)					1957	1900	1955				1950	1945
	Owner or user	T. 8 N., R. 4 W.	A. A. Cole	A. A. Cole A. C. Frisbie	L. Thomas	L. Thomas	L. Thomas	6-19-58 L. Thomas		McCleary		A. W. Crouch	8-25-58 A. W. Crouch
Date	q		8-25-58	8-25-58	6-19-58	6-19-58	6-19-58	6-19-58	6-19-58	6-19-58	6-19-58 8- 5-31	8-25-58	8-25-58
Source	of data and other numbers		SS	និ ក	SS	GS	GS	GS	GS M-20	SS	GS M-21 DGT-102	GS	GS
	USGS		1071-4/8	1792	1911	1912	£161 62	1917	19P1	1961	19R1	20A1	20A2

ပ						၁					ч	C,W Wp	Ö	ت ت	O
33.34	dry	(a)			18.59	20	20.36	69.6	7.66	18.29	10,	24.43	7	27.77	a50
2,405	2,390	2,390	2,390	2,390	2,405	2,400	2,400	2,400	2,395	2,400	2,405	2,410	2,410	2,410	2,410
0					1.5		1.0	-1.0	1.5	φ.		8.0		0	
Tc			Na	Na	T _C		Thc	5	T _C	Tc		Tor		Ter	
un	Ds	Un	Un	Un	E C	E C	뇝	Un	E C	ďn	ង	E C	뇝	D	II
N	щ		N	15	1 2	t 1	2	N	r n	N	5	J 12	10	નીળ	50
Z	H	ΟI	Z	H	ر ص	C	EH	Z	ر د	Z	5		H	٦	FI
12	*	D 72	D 72	77	D 36	D 72	c 14	c 72	D 36	D 72	C 14	90	77	00	R 12
04					22	09		59		24.3	56	50	91	65	115
1953					1928			1951	1920	1932					1954
R. Boyles Formerly A. Cates					S. Jackson	R. Boyles	R. Boyles	F. F. Abken	F. F. Abken	F. F. Abken	F. F. Abken	R. Fotia	Fotia and Cortez	J. Sanders	J. Sanders losure.
8-25-58	6-19-58	6-19-58	6-19-58	6-19-58	6-20-58	6-20-58	6-20-58	6-20-58	6-20-58	6-20-58	6-20-58			6-19-58	2 GS 6-19-58 J. San Well in locked enclosure.
GS F	GS	GS	GS	GS	GS	GS	GS	GS	SS	GS	S	도 전 ()	S S	GS	GS 11 in
20B1	20F1	20F2	20F3	20F4	2061	2002	2063	2021 COS	2012	2017	CKS	LNOZ	SONZ	20P1	20P2 a. We

a. Well in Locked d. Pumping.

Other		S	Wp							S	S		
		33	3.5	12	174	16.99			9	6.18	7.26	12	dry
ltitude — of lsd (feet) be		2,410	2,405	2,1:05	2,405	2,405	2,390	2,390	2,385	2,385	2,385	2,400	2,410
sauring: AJ point ((feet):		•				1.1				1.0	1.0		
Measurir point (feet			Na		Na	Ter	Ma	Na		Bhc	TCE		
nse.		Ir	D _m	D	r.	Ţ	un	Un	Un	뉩	Un	Ä	Ds
<pre>: :Type,:Pump : :Depth:diam-:type :Yield:Sp.:Use :(ft.): eter: and :(gpm):cap.: : :(in.):power: : :</pre>			+										
data Pump type and power		T 20	J 3/4	0	T $7\frac{1}{2}$	CJ	N	N	N	T 40	N E	T 30	N
Type, Pump:diam-:type eter: and:(in.):power:		R 12	Д	9 Q	R 16	D 48	Д	Д	D 30	17	77	C 12	D 72
Depth:	ಶ		50	20	128		30	30		180	50	143	15.0
Year Depth completed (ft.)	4 W Continued	1956	1930	1930	1955		1930	1925		1954		1957	
Owner or user	T. 8 N., R. 4 W	J. Sanders	Frank Saylor Warren Smithson	Frank Saylor	Frank Saylor	Bradley Ranch	Abken	Abken	John Owens	John Ovens	John Owens	R. W. McClary	R. W. McClary
Date of observa-		6-19-58	6-19-58 7- 6-32	6-19-58	6-19-58	6-19-58	6-20-58	6-20-58	8-29-58	8-29-58	8-29-58	6-18-58	6-19-58
Scurce of data and other numbers		GS	GS M-23	GS	GS	GS	GS	GS	GS	GS	cs	SS	GS
USGS		8/4-20P3	2001	2002	2003	5000	20R1	20R2	श्राष्ट्र	ZIFI	SIF2	29B1	29C1

υ					*					ᆸ		 O	C,L	Ö	Ö	dM		
dry	27.94	dry	12		12	10	(g)	9		33.67			140	40	24.78	21.92	10	
2,410	2,410	2,410	2,410	2,400	2,410	2,415	2,410	2,420	2,415	2,415	2,410	2,470	5,44,5	2,430	2,420	2,415		
	0									લ					1.5	0.6-		
	Ic			Na				Na	Na	Пс					НСС	고 라	1	
Ds	Un	Ds	Ä	ď	ដ	Ħ	Un	H	u E	H	E	Ir	Ľ	Ir	四	nn		
									·	5 74								
										20 1,116							810	
N	N	N	T 25	N	T 30	T 15		T 20	А	T 20		T 25	T 25	T 25	C 5	C 7½		
12	c 16	D 72	R 12		c 12	16	R 14	14		RG 20		74	RG 14	14	10	D 48	D 60	
8.0	100	15.0	90		238	88	(g)	100		90		5		212	55	27.5	35	
												50 405	1 364		<i>ι</i> Λ	CA	m	
	1947		1951		1955	1953	(g)	1958		1951		1955	1951	1953				
R. W. McClary	R. W. McClary	R. W. McClary	R. W. McClary		R. W. McClary	R. W. McClary	R. W. McClary	R. W. McClary	Judge Volks	Judge Volks	Judge Volks	C. Smith	C. Smith	C. Smith	C. Smith	©. Smith	J. L. Thompson	
6-19-58	6-18-58	6-18-58	6-18-58	6-18-58	6-19-58	6-18-58	6-18-58	6-18-58	6-18-58	6-18-58	6-19-58	6-18-58	6-18-58	6-18-58	6-18-58	6-18-58)-<0=3<	drilled.
GS	88	GS	GS	GS	GS	GS	GS	GS	GS	GS	SS	GS	GS	GS	GS	GS	M-24 DGT-101	Being dri
2962	2901	2902	29E1	29JJ	29ML	29M2	29N1	29N2	30A1	30A2	30A3	30E1	30F1	30G1	30HD	30元	Ä	g. Be

Water	oint of 1sd Depth Other (feet) below 1sd data (feet)			(9)	dry C	2.66 C			56.96 C,W	`	43.89	49.45		
: Measuring: Altitude:	of 1sd (feet)		2,465	2,465	2,450	2,435	2,430	5,445	2,464.6	2,465	2,450	2,460	2,445	5,445
uring	Int Seet):			0		2.3			0.4		0	ů		
Measu	Ω			Hcc		Tc	Na		Ter		Tc	130		
	Use		붜	拍	Ds	12	2	占	Un	Ir	I	Un	H	Ä
. Well data	Year : Type, Pump : : : : com- : Depth: diam-: type : Yield: Sp. : Use : pleted: (ft.): eter: and : (gpm): cap. : : (in.): power:	4 WContinued	14 T 50	12 T 50	59.5 12 N N	O	E	12 T 25	89 T 7½	16 T 50	16 T 40	160 14 N N	12 T 10	T 15
	Owner or user	T. 8 N., R. 4 W.	Frank Delfino	Frank Delfino F. H. Merrell	Frank Delfino	Frank Delfino	Frank Delfino	Frank Delfino	6- 4-58 Frank Delfino					
Bate	ලි		6-18-58	6- 4-58	6- 4-58	6- 4-58	6-10-58	6- 4-58	6- 5-58	6- 4-58	6- 4-58	6-10-58	6- 4-58	6- 4-58
Source	of data and other numbers		GS	88	GS	GS	83	GS	GS M-19	GS	GS	GS	85	SS
	USGS		8/4-30MI	30N1	30N2	3001	30R1	3101	3171	31122	31.03	31.174	31F1	31F2

GS		6-11-58	J. M. Scoggin		09				Na		2,440	12	Ö
GS 6- 4-58 Fra			Frank Delfino			16 T	T 100	H			2,455		
GS 3-25-58 Fre			Fred Orebaugh		09	17			Tc -	Tc -12.82 Tcr-10.71	-12.82 2,450 -10.71	19.97	C, W
GS 6-12-58 R.		ř	R. Griffin		59	R 16 C	5	Ħ			2,440	16	
GS 6-19-58 C.			Smith	1951	84	12 N 1	N	Ds			2,420		
M-18 1- 7-32 F.			F. H. Merrell			24			Tc	6.	2,445	16.2	Мp
M-17a 5-26-32	5-26-32								Tap		2,440	1.6	ďM
M-17 5-26-32 F.			F. H. Merrell			1/1			Tc	0.4-	2,435	4.4	ď₩
GS 6-17-58 Fr			Frank Delfino			ט	r +	D	Tc	0	2,425	6.89	
GS 6-17-58 AT			ATSF Ry	1914	50	C 10 T	5	In			2,430	(a)	ы
GS 9- 3-58 He			Helendale School		009	14 N 1	N	Un	Tc	÷	2,425	12.11	
GS 6-19-58 He			Helendale Comm.			(c)	1/3	Dm	Na		2,430		
GS 6-17-58			cnuren					D			2,445	(a)	
GS 6-17-58 Cal		Ca.	California Highway			T 3		Ä	Na		०५५७		
6-12-58		He	Helendale School			14 T 2		a	Tc ·	-5.8	2,430	10.05	C
F-32X1 6-12-58 J.		₽,	J. M. Scoggin			12 C ½		P	T _C	1.0	2,430	9.75	
GS 6-17-58 J.	- 1	٦,	J. M. Scoggin			LIT		ď	Na		2,430		
Well in locked and only	solone bedool	مار	941										

a. Well in locked enclosure. b. Tape smeared.

Other		<i>5</i> \			Ö	Wp			ı	н			()
Water: level: Depth: Ot elow lsd (feet)		8.44 C		dry	01 01	25.3 W			Н	I	dry	g210	196.70 C
		30	9			00			35	8			
Measuring Altitude point of 1sd (feet):		Ter 1.8 2,430	2,440	2,455		2,460			2,685	2,680	2,734	2,620	1.1 2,605
asuring: Al point (feet): (7.				0							
Meas po		Ter	Na			Ter			Na	Na			Tap
Use		DE C	D	DB					ë S	Ds	Ds	Un	Da
Year : Type, :Pump : : com- : (ft.): eter: and :(gpm):cap.: Use : pleted : :(in.):power: : :					115								
data Pump: type:Y and:(H I	O -'N	N					N	Z	N	N	D J
Well data Type, Pump diam-:type eter: and (in.):powe		D 24	8	D 70	δ α				R 11	R 11	DA 36	9 0	C 5
Depth:	eđ			10	30				2539	2085	190	g210	228
Year com-	Continu			ſ	1001				1956	0 1955		81958	1931
Owner or user	T. 8 N., R. 4 W Continued	6-12-58 J. M. Scoggin		ATSF Ky, Helendale 1		Helendale Store		T. 8 N., R. 5 W.	U. S. Government,	Corp., well G3 Mrs. Turuo, Adelanto 1955	U.S. Government	E. L. Poper	Tilumoff
Date of observa- tion		6-12-58	6-12-58	6-11-58	12-16-32	3-23-32			8-26-58	8-26-58	8-26-58	8-26-58	8-26-58
Source of data and other numbers		SS	GS	10	R 1 DGT-103	M-16			SS	SS	SS	GS	GS S
USGS		8/4-3214	32NL	32N2		32-1	68		8/5- 7F1	14肛	1961	2101	SIFI

山

C

a. Well in locked enclosure.

g. Being drilled.

	Other:							O			ᆈ
Water	level Depth clow lsd (feet)		97.73		230	231.16		99.55		dry 212.5 210.7	203.60
	Measuring.Altitude: point of lsd : (feet):		3,040		2,695	2,695		2,750		2,455	2,475
	point (feet)		Dm Hcc 0.9			'n		0		ŵŵ	Hcc -1.0
	Measuri point (feet		Нсс			Нсс		Na Tc		Tc	Hcc
	Use		P		Un	Un		T		Ds	占 占
	: : :Type,:Pump : : : : : : : : : : : : : : : : : : :										
data	Fump type and power		L G		N	N		N		ESS	0 0 E E
Well	:Type,:Pump: n:diam-:type:):eter: and: :(in.):power:		8		R 14	R 14		ω 10		Dr 10	Dr 8
	: : Type,:Pump : : Coar : Depth: diam-:type : Yield:Sp. : com- :(ft.):eter : and :(gpm):cap :pleted: :(in.):power: :				0006	300		300		224	1942 450
	Owner or user	T. 8 N., R. 8 W.		T. 9 N., R. 5 W.	U. S. Government	U. S. Government	T. 9 N., R. 6 W.	U. S. Government	T. 10 N., R. 6 W.		Darr and Caillier George Beecher
: Date	observa-: tion:		8-27-58		8-28-58	8-28-58		8-26-58 5- 4-53		8-25-58 4-22-53 10-24-52	8-25-58 10-23-52 1942
:Source :	of data: and: other:		GS		GS	GS		GS GS		68 68 68	68 68 68
	USGS : o number :		8/8-2451 GS		IMIE-5/6	31.11	70	9/6-34Bl		10/6-351	SEI

	C,W Wp		J.O		ij	0.01		
188.5	204.20	dry dry 194.00	(e) (e) 174.77 174.95 175.23	201.51	192	200.02 192.72 192.0		QT.A
2,470	2,470	2,470	2,475	2,475	2,475	2,500	2,510	2,490
ď	ů.	1.0	000	• 5		000		
Hp	Нрр	Tc	Tes Tes	Ic	Na	13c	Na	
D S E	ك 8	Ds Ds Un	un	ď	D D	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	ď	Ds
F1 5	T 10	N N	N	N	H H 3	NG C	N	
Dr 10	Dr 10	D2:	Dr. 14	c 10	다. 10	Dr 6½	C 5	
			258.8 Dr. 258.8 Dr. 285 Dr.	237.5				0
0 340	044 6	5 0 185 265	25 25	23	1949 h387 234	380		200
1930	1949	1935			194			
llier er	Darr and Caillier	Darr and Caillier Robert Caillier	California Electric Power Co.	Derr and Caillier				ahowe water level.
Darr and Caillier George Beecher H. B. Julien	nd Cai	Darr and Cailli Robert Caillier	nia F	nd Cai	lders	sman	Chessman	70+67
arr ar corge B. J	ırr ar	arr ar obert	alifornia Power Co.	ır ar	Carl Siders	R. Chessman		hove
							æ Q	
8-25-58 10-23-52 10-30-50	8-25-58	8-25-58 12-1-54 10-23-52	8-26-58 11-18-55 3-3-55 12-1-54 4-22-53	8-25-58	8-25-58 10-23-52 1049	8-25-58 12-1-54 4-22-53	8-25-58	1919
GS GS BR	GS F-5F1	9 9 9 8 8 8	68 68 68 68 68	GS	68 68 68	68 68 68	GS	DGT-6
5E2	5E3	5E4	5 <u>3</u> 5	9 <u>a</u> 5	SFI	(L1)	(P1	6-1

Ubstruction in we. Well deepened. o .d

er :	Cepth :Other cor sets (feet)		0 L	ы			0	5	0	182.02	180.0
Water	Depth below 1s (feet)		120				200	165	200	18	18
: :Measuring: Altinde:	oint of 1sd Depth Other (feet); (feet) below 1sd data (feet)		2,700	2,700		2,490	2,490	2,485	2,525	0.5 2,505	2,503
suring	point (feet,										0
Mea	Δ.									Hpb	Tc
	USE			Ds		Ds			•	Q	2 2
	Year Type, Pump : com- Depth: dlam-: type : Yield: Sp. :Use: pleted: (ft.): eter: and :(gpm):cap.: :: :(in.):power:										
data	Pump type and power		N	N		N		L ×		T 3	HH
Well data	Type, Pump : dlam-:type : eter: and : (in.):power:		æ	æ		Q	Dr 10	Dr. 8		Dr. 8	р. 8
	r Depth	funed	1955 1561	1957 3500			871	200	300	263	240
•• ••	Year com-	Cont	199	195							
••••	Owner or user	T. 10 N., R. 6 WContinued	U. S. Air Force	1957 U. S. Air Force	T. 10 N., R. 7 W.	A. A. Sharp	1919 ATSF RR			8-25-58 O. E. Atterberry	Mrs. Eckery Mrs. Eckery
Date	े व		55	1957		8-25-58	1919	1919	1919	8-25-58	GS 8-25-58 GS-3D1 4-17-53
Source	or data and other numbers		DFC-1	20M2 SFC-1		GS	2-1 DGT-4	DGT-3	DGT-5	GS	
	USGS		10/6-20MI	ZOMZ		10/7- 201	72	2-2	2-3	4A1 GS	4.42

	M .	ij	
	196.78	172	
	.24 2,455	2,450	2,497
	Tap		N N N
	Ps	`	22
		:**	
		7	9
	T 40		5 5 1 1
	RG 14		လ လ
		220	408 720
	1955	1946	1938
T. 11 N., R. 6 W.	Wilk	1958 G. K. Hogan, J. DeFon	T. 11 N., R. 7 W. Grace Davidson
	8-25-58 Wilk	1958	8-25-58 4-17-53
	GS	GS	S S S
	11/6-31Rl GS	31-1 GS	11/7-34P1

Table 2.--Cross index of other well numbers and Geological Survey numbers

The first column shows the number assigned to the well by the other agency indicated and the second column shows the Geological Survey number assigned to the same well. The numbers of the other agencies are listed consecutively. Numbers missing in the consecutive listings are for wells outside the west part of the Middle Mojave Valley area, for wells for which no data are available, or for wells for which the other numbers and Geological Survey numbers are the same. CDE numbers are after California Department of Engineering (1918) and Thompson (1929, p. 399-401). DCT numbers are after Thompson (1929, p. 271 and 436).

Part 1. California Department of Engineering (CDE)

1		1918,	and Thompson	(DGT) 1929	
CDE		CDE	: USGS	DGT:	: USGS
number	: number	number	: number	: number	: number
194 195 196 197 198	6/5-32P1 34J1 34E1 33A1 26Q1	279 280 281 282 283	7/5-26m 27m 27m 27c1 27-1 15-1	; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	10/7- 2-2 2-1 2-3 10/6- 6-1 7/4- 7Q3
199 200 201 202 203	6/5-14N1 14M1 16R1 28-2 28F3	284 285 286 287 288	7/5-31-1 6/5- 2N1 7/5-26M1 6/5- 2E1 10H1	94 95 101 102 103	7/5-14-1 15P1 8/4-30H2 19R1 32N2
204 205 206 207 208	6/5-20-1 20R1 20-2 27-1 8P1	289 290 291 302 303	6/5-28-3 28-1 14D1 6/4- 6E9 7/4-19G1	341 342	6/4-27 - 1 27 - 2
266 267 268 271 272	6/4-33-1 34P3 34M7 32N2 32N3	304 305 306 307 308	7/4-19-2 7B1 18K1 6/5-21-1 26-1	:	
273 274 275 276 277 278	6/4-18-1 18P3 18P4 7/4-30C1 30D2 19-1	309 310 311	6/5-19B1 30-1 30R1	:	

Part 2. M-numbers assigned by all agencies doing ground-water work prior to July 1, 1943, when the Geological Survey numbering system was adopted (U. S. Geological

	Survey, 194		
M	: USGS	: M	USGS
number	: number	number :	number
1 2 3 4 5	6/4-29-1 30-1 19-1 7N2 6E9	15 : 16 : 17 : 17a : 18	8/4-31R1 32-1 31-4 31-3 31-2
6 7 7a 7b 7c	7/5-25J7 7/4-30C1 7/5-26B1 22R1 22N1	19 20 21 22 23	31D1 19P1 19R1 20N1 20Q1
7ca 8 9 10	7/5-22N2 7/4-19N2 19-3 7/5-24-3 24-2	24 101 105 106	30H2 7/5- 1R1 6/4-30D5 7/5-2-1
12 12a 12b 13 14	7/5-24-1 24R2 24R1 7/4-19G1 7Q3		

Part 3. San Bernardino County Flood Control District (F), given only where different from Geological Survey

		number					
 F	:	USGS	:	F	:	USGS	
number	:	number	, :	number	:	number	
6/4-19G1 6/5-15R1 18B1 29H1 29H2		6/4-19-1 6/5-15-1 18G1 29J1 29H1	:	6/5-30J1 32J1 33L1 8/4-32X1 10/6- 5F1		6/5-30R1 32R1 33-1 8/4-32M1 10/6- 5E3	

Table 3.--References that contain water-level measurements in wells in the west part of the Middle Mojave Valley area, California

Years for which measurements are available	Reference 1	Year of publication
1912, 1917-18	California Department of Engineering	1918
1905-32	California Division of Water Resources	1934
1946-50	San Bernardino County Flood Control District	1951
1951-52	San Bernardino County Flood Control District	1954
1952-54	San Bernardino County Flood Control District	1958

U. S. Geological Survey Water-Supply Papers

Years for which measure- ments are available	No. of: Water-: Supply: Paper:	Year of publication	: :wh :	Years for nich measure ments are available	:No. of: -:Water-: :Supply: :Paper:	Year of publication
1912, 1917 - 18, 1928	578	1929		1947	1101	1951
al905-39	886	1940	:	1948	1131	1951
1940	911	1941	:	1949	1161	1952
1941	941	1943	:	1950	1170	1953
1942	949	1944	:	1951	1196	1954
1943	991	1945	:	1952	1226	1955
1944	1021	1947	:	1953	1270	1956
1945	1028	1949	:	1954	1326	1957
1946	1076	1949	:	1955	1409	1957

^{1.} For complete titles see references.

a. Measurements for years prior to 1932 are reprinted from earlier publications cited above.

Table 4.--Wells for which periodic water-level records are available

	(Publishe	ed and unp	ublished data)
USGS : F 1/	M : CI	DE or DGT;	Records available (years)
number :number :	number:	number2	(years)
6/4-6E9 7N2 19-1 19G1 29-1	5 4 3	302	1917, 1930-32 1930-32 1930-32, 1934-47 1930-32
30D5 30-1 6/5-8F1 14M1 15-1 15R1 18G1 18B1	105	200	1930-31 1930-32 1947-58 1918, 1947-58 1947-54 1947-48, 1950, 1952, 1954
6/5-18P1 19C1 28E1 28F1			1947-56, 1958 1947-50, 1952-58 1949-50, 1952, 1958 1947-48, 1950-58
29J1 29H1 29H1 29H2 30R1 30J1 32P1 32R1 32J1 33-1 33L1		311 194	1953-58 1944-48, 1951, 1954-56, 1958 1917, 1947-58 1917, 1947, 1949-51, 1953-55, 1958 1948-55, 1957 1948-57
34E1		196	1917, 1948-53, 1957
7/4- 7Q3 19G1 19N2 19-3	14 13 8	93 303	1925, 1931-32 1918, 1922-23, 1930-32 1930-32 1930-32
30CJ	9 7	276	1917, 1930-32, 1935-58
7/5- 1R1 2-1 22N1 22N2 22R1 24R1 24R2 24-1 24-2 24-3 25J7 26B1	101 106 7c 7ca 7b 12b 12a 12 11	279	1930-32 1950, 1953-56, 1958 1956-58 1950, 1953-58 1930-32 1930-32 1930-32 1930-32 1930-32 1930-32 1930-32 1930-32

^{1.} San Bernardino County Flood Control District numbers are shown only where different from U. S. Geological Survey numbers.

2. California Department of Engineering (1918) data are also shown in WSP 578 by D. G. Thompson (1929).

^{3.} See table 3 for references to published water-level measurements; see table 1 or 5 for unpublished water-level measurements.

USGS : number :nu	F M: mber 1 : number:	CDE or DAT	Records available (years)
8/4-19P1 19P1 20N1 20Q1 30H2 31D1 31R1 31-2 31-3 31-4 32-1	20 21 22 23 24 19 15 18 17a 17	102	1930-32 1918, 1930-31 1930-32, 1934-17, 1951-58 1930-32 1919, 1930-32 1930-32, 1030-58 1930-32, 1934-56, 1958 1930-32 1930-32 1930-32
8/6-1491			1953-58
10/6-5E3	5F1		1953-58
11/6-31RI			1955-58

^{1.} San Bernardino County Flood Control District numbers are shown only where different from U. S. Geological Survey numbers.

^{2.} California Department of Engineering (1918) data are also shown in WSP 578 by D. G. Thompson (1929).

^{3.} See table 3 for references to published water-level measurements; see table 1 or 5 for unpublished water-level measurements.

Table 5 .-- Records of water levels in wells

Table 5 includes all unpublished records for wells having more than five water-level measurements; wells having less than five measurements are shown in table 1. Also included in this table are the complete published and unpublished records for wells

6/5-14M1 7/5-20R1 29J2 8/4-20N1 34E1 31R1 7/4-30C1

which have been selected as representative to show the range of water-level fluctuations in different parts of the area.

Altitudes given are in feet above mean sea level for the land-surface datum at the well. Land-surface datum is a plane of reference which approximates land surface. Altitudes given in whole feet are interpolated from topographic maps. Altitudes given in feet and tenths were determined by spirit leveling (from California Department of Engineering or U. S. Bureau of Reclamation records).

Measurements. Most of the water-level measurements were made by the U. S. Geological Survey (GS) mainly in years prior to 1954; by the U. S. Bureau of Reclamation (BR) mainly in 1946 and 1947; and by the San Bernardino County Flood Control District (F) mainly in the years since 1953. All measurements of water level have been adjusted to depth below land-surface datum. That is, the altitudes of the measuring points as reported above or below land-surface datum have been subtracted from or added to the water-level measurements.

Depth of well. The depth given is the reported depth of the well or the depth measured by the Geological Survey at the time of the field canvass. On some dates the depth to water level given in the table exceeds the reported or measured depth of the well. This probably results from a progressive filling of the well with sand or other material.

6/5-8Fl. Lingren. Depth about 90 feet. Altitude about 2,780 feet.
Records available: 1947-58. Records furnished: F except as indicated.

		Water		Water		Water
	Date	level	Date	level	Date	level
May Nov. May Jan. May Nov.	25, 1949 11, 1950	78.6 79.6 77.6 78.8 78.0 77.6 77.6	Nov. 27, 1951 May 13, 1952 Nov. 29 May 22, 1953 Nov. 5 May 10, 1954 Nov. 15 Apr. 11, 1955	77.3 79.6 82.76 79.32 79.32 879.15 78.42 77.72	Dec. 5, 1955 Apr. 3, 1956 Dec. 17 Apr. 29, 1957 Jan. 17, 1958 Apr. 7	77.40 a77.40 77.13 78.84 a77.58 a77.59

6/5-14M1 (CDE-200). H. K. Hedges. Depth 163.5 feet. Altitude 2,836.7 feet. Records available: 1918, 1947-58. Records furnished: F. except as indicated.

Feb. 13, 1918 d120.0	May 15, 1951 117.65	Apr. 11, 1955 118.30
Oct. 21, 1947 118.2	Nov. 27 118.7	Dec. 5 117.1
May 4, 1948 117.9	May 13, 1952 117.7	Apr. 3, 1956 all7.98
Nov. 23 118.2	Nov. 29 117.95	Dec. 17 117.20
May 25, 1949 117.7	May 22, 1953 117.37	Apr. 29, 1957 118.46
Jan. 11, 1950 118.6	Nov. 5 117.70	Oct. 11 al16.91
May 8 120.7	May 10, 1954 118.00	Apr. 7, 1958 all6.67
Nov. 16 117.6	Nov. 15 118.27	

6/5-15-1 (F-15R1). George Air Force Base. Altitude 2,841.0 feet. Records available: 1947-54. Records furnished: 1947-50, <u>BR</u>; 1951-54 <u>F</u>.

Oct. 21, 1947	116.0	May	8,	1950	116.9	Nov.	29,	1952	115.7
May 4, 1948	115.9	Nov.	16		116.2	May	22,	1953	115.59
Nov. 23		May	15,	1951	116.4				115.49
May 25, 1949	116.0	Nov.	26		115.9	?		1954	plugged
Jan. 11, 1950		May	13,	1952	115.7				

6/5-18G1 (F-18B1). Depth about 70 feet. Altitude about 2,805 feet. Records available: 1947-48, 1950, 1952, 1954. Records furnished: F

TICCO.	1 45 6	740770		<u> </u>	10, 27,	, ,	-//-;	-//	21000100	2 02 112	onica.	*
Nov.	4,	1947	64.2		Jan.	11,	1950	65.5	Nov	. 29,	1952	67.90
May	5,	1948	66.6		May	8		67.8	?		1954	destroyed
Nov.	23		64.3		May	13,	1952	65.8				

6/5-18P1. Depth 62.8 feet. Altitude about 2,810 feet. Records available: 1947-56, 1958. Records furnished: F. except as indicated

O 1 C 2.						,			
Nov.	3, 19	947 60.0	May	15,	1951	59.62	Nov.	13, 19	954 64.30
May	4, 19	948 60.0	Nov	. 27		59.5	Apr.	11, 19	63.60
Nov.	23	61.1	May	13,	1952	59.9	Dec.	5	64.00
May	25, 19	949 59.6	Nov	. 28		59.92	Apr.	5, 19	956 62.92
Jan.	11, 19	950 60.2	May	22,	1953	60.60		29	59.70
	8			5			Jan.	16, 19	958 a59.81
Nov.	16	60.4	May	10,	1954	66.70	Apr.	7	a61.43

6 60.4 May 10, 1954 66.70 Apr. 7

a. Measurement by Geological Survey.
d. Measurement by California Pepartment of Engineering.

6/5-19C1. Forest Mays, formerly S. Austin. Depth about 89 feet. Altitude about 2,820 feet. Records available: 1947-50, 1952-58.

Records	furnished:	F.	except	as	indicated.

	Water		Water		Water
Date	level	Date	level	Date	level
Nov. 3, 1947 May 4, 1948 Nov. 23 May 25, 1949 Jan. 11, 1950 May 8 May 13, 1950	64.4 64.6 66.4 64.4 64.8	Nov. 28, 1952 May 22, 1953 Nov. 5 May 10, 1954 Nov. 15 Apr. 11, 1955 Dec. 5	64.35 64.30 64.30 65.30 64.30 64.12 64.30	Apr. 3, 1956 Dec. 17 Apr. 29, 1957 Jan. 16, 1958 Apr. 7	64.26 64.88 64.99 a64.75 a64.87

6/5-28E1. John Deutschman. Depth about 200 feet. Altitude about 2,875 feet. Records available: 1949-50, 1952, 1958. Records furnished: 1949-50, 1952, F; 1958, reported measurement by owner.

May	26,	1949	121.8	Nov.	16,	1950	115.1	Nov.	29,	1952	94.80
Jan.	11,	1950	120.3				121.33	Jan.	15,	1958	122

6/5-28F1. John Deutschman. Depth 211.5 feet. Altitude 2,875.6 feet. Records available: 1947-48, 1950-58. Records furnished:

1947-48, 1950, BR; 1951-58, F, except as indicated.

			Nov.	29,	1952	130.35	Apr. 3, 1956 al28.15
4,	1948	128.72	May	22,	1953	128.65	Dec. 17 124.65
23		126.6	Nov.	5		126.20	Apr. 29, 1957 129.29
16,	1950	126.1	May	10,	1954	129.60	Jan. 15, 1958 a126.67
15,	1951	126.7	Nov.	15		127.50	Apr. 7 al27.69
27		124.8	Apr.	11,	1955	126.75	
13,	1952	131.6	Dec.	5		122.40	
	23, 4, 23 16, 15, 27	23, 1947 4, 1948 23 16, 1950 15, 1951 27	23, 1947 127.3 4, 1948 128.72 23 126.6 16, 1950 126.1	23, 1947 127.3 Nov. 4, 1948 128.72 May 23 126.6 Nov. 16, 1950 126.1 May 15, 1951 126.7 Nov. 27 124.8 Apr.	23, 1947 127.3 Nov. 29, 4, 1948 128.72 May 22, 23 126.6 Nov. 5 16, 1950 126.1 May 10, 15, 1951 126.7 Nov. 15 27 124.8 Apr. 11,	23, 1947 127.3 Nov. 29, 1952 4, 1948 128.72 May 22, 1953 23 126.6 Nov. 5 16, 1950 126.1 May 10, 1954 15, 1951 126.7 Nov. 15 27 124.8 Apr. 11, 1955	4, 1948 128.72 May 22, 1953 128.65 23 126.6 Nov. 5 126.20 16, 1950 126.1 May 10, 1954 129.60 15, 1951 126.7 Nov. 15 127.50 27 124.8 Apr. 11, 1955 126.75

6/5-29J1 (F-29H1). Adelanto Community Service District. Depth about 190 feet. Altitude about 2,880 feet. Records available: 1953-58.

Records furnished: 1953-57, F; 1958, GS.

TICOULUD L'ULILLO	2775 717 - 7	2770, 000			
May 22, 1953		11, 1955		Apr. 29,	1957 112.15
Nov. 5		5	146.27	Apr. 7,	1958 a108.84
May 10, 1954		3, 1956			
Nov. 15	110.60 Dec.	17	109.67		

6/5-29H1 (F-29H2). Adelanto Community Service District. Depth about 190 feet. Altitude about 2,880 feet. Records available: 1944-48, 1951, 1954-56, 1958. Records furnished: F, except as indicated.

	, -,,					
	5, 1944		Nov.	23, 1948	112.3	Apr. 3, 1956 a144.10
Jan.	5, 1945	107.8	May	15, 1951	111.20	Dec. 17 107.25
Mar.	13, 1946	109.5	Nov.	15, 1954	111.73	Jan. 15, 1958 all2.28
Nov.	3, 1947	111.4	Apr.	11, 1955	111.62	Apr. 7 all0.81

a. Measurement by Geological Survey.

6/5-30R1 (F-30J1, CDE-311). A. L. Stone, formerly Olive Stone. Depth about 140 feet. Altitude about 2,880 feet. Records available: 1917, 1947-58. Records furnished: 1947-50. BR: 1951-57. F: 1958, GS.

TYT1, TY41-70.	necorus	Turnisned. I	יווע פיטלים דירי.	エフノエーノーラ エラ エフノンリー	
	Water		Water		Water
Date	level	Date	level	Date	level
Nov. 3, 1947	107.6	May 13, 1	952 112.6	Dec. 2, 1955	108.15
May 4, 1948	107.6	Nov. 29		Apr. 3, 1956	108.75
Nov. 23	107.6	May 22, 1	.953 108.25	Dec. 17	108.15
May 25, 1949	107.4	Nov. 5	108.25	Apr. 29, 1957	108.03
May 8, 1950	107.8	May 10, 1	1954 108.50	Jan. 15, 1958	107.93
Nov. 16	107.8	Nov. 15	108.09	Apr. 7	107.83
May 15, 1951	107.80	Apr. 11, 1	1955 107.97		

6/5-32Pl (CDE-194). N. L. Notterman, formerly J. Biescar. Depth about 243 feet. Altitude about 2,945 feet. Records available: 1917, 1947, 1949-51, 1953-55, 1958. Records furnished: 1947, 1949-51, 1953-55, F; 1917, 1958, GS.

1711,	1970, 60	•					
	1917 3, 1947 25, 1949		Nov.	26, 195	0 118.0 1 119.6 3 120.82	Apr. 11,	1954 121.65 1955 125.75 1958 dry
	11, 1950				122.30		

6/5-32R1 (F-32J1). N. L. Notterman, formerly J. W. Tobin. Altitude about 2,945 feet. Records available: 1948-55, 1957. Records furnished: F.

May	4,	1948	115.9	May	15,	1951	118.37				120.90
Nov.	23		116.5	Nov.	26		119.4	Nov.	15		127.70
May	25,	1949	116.8	May	13,	1952	122.5	Apr.	11,	1955	121.35
Jan.	11,	1950	116.9	Nov.	29		121.4	Apr.	29,	1957	122.92
			117.3	May	22,	1953	120.90				
Nov.	16		117.4	Nov.	5_		122.20				

6/5-33-1 (F-33L1). McCurdy. Altitude about 2,915 feet. Records

available. 17-0-71.	necords rarintbilea.	
May 4, 1948 126.5	Nov. 26, 1951	
Nov. 23 127.1	May 13, 1952	
May 25, 1949 127.3	Nov. 28	130.8 Apr. 3, 1956 131.93
Jan. 11, 1950 127.8	May 22, 1953	
May 8 127.9	Nov. 5	133.10 Apr. 29, 1957 132.47
Nov. 16 128.6	May 10, 1954	130.80
May 15, 1951 129.33	Nov. 15	131.94

6/5-34E1 (CDE-196). N. L. Notterman, formerly J. M. Scott. Depth 162.5 feet. Altitude about 2,920 feet. Records available: 1917. 1948-53. 1957. Records furnished: 1948-53, F; 1917, 1957, GS.

-/- 1	, -/										
		1917	d137.0	May	8,	1950	194.0				179.75
May	5,	1948	173.7	Nov	. 16		200.0				169.00
Nov.	23		174.6	May	15,	1951	200.71	Nov.	5		170.16
May	25.	1949	167.3	May			175.0			1957	156.14
	d.	Mea	surement	by Calif	ornia	Depa:	rtment of	Enginee	ring	•	

7/4-30Cl (M-7, CDE-276). Formerly W. Watkins. Depth 119.9 feet. Altitude 2,561.5 feet. Records available: 1917, 1930-32, 1935-58. Records from Geological Survey Water-Supply Papers or

from F.	except	as	indicated.	
---------	--------	----	------------	--

Date	Water level	Date	Water level	Date	Water level
1917 Sept. 4, 1930 Oct. 4 Dec. 12 Feb. 6, 1931 Mar. 20 Apr. 24 May 21 July 29 Sept. 2	d54.0 £ 57.0 56.92 56.77 56.59 56.70 56.70	Sept. 16, 23 30 Oct. 6 15 21 28 Nov. 6 18 25		Jan. 17, 1949 Feb. 17 Mar. 16 Apr. 14 May 9 June 16 July 14 Aug. 18 Sept. 15 Oct. 19	57.6 57.4 57.2 58.2 58.17 58.4 59.7 58.5 58.3 58.2
Oct. 2 Nov. 12 Dec. 23 Jan. 27, 1932 Feb. 23 Mar. 23 Apr. 21 June 1 Dec. 8 Jan. 21, 1935	57.02 56.86 56.76 56.74 56.80 56.80 57.05 57.08	Dec. 2 17 Jan. 1, 21 Feb. 4 19 Mar. 4 18 Apr. 8	b57.1 b57.0 1947 b56.9 57.0 56.9 56.9 57.0 57.1	Nov. 15 Dec. 14 Jan. 24, 1950 Feb. 15 Mar. 15 Apr. 19 May 4 June 15 July 12 Aug. 15	58.72 57.8 57.5 57.6 57.5 58.4 57.75 58.9 58.8
Nov. 12 Mar. 26, 1936 Jan. 14, 1937 June 21 Dec. 8 June 7, 1938 Oct. 4 May 24, 1939 Nov. 25 May 8, 1940	57.45 57.40 57.70 57.60 57.00 57.02 56.75 57.11	May 13 20 26 June 9 24 July 8 22 Aug. 7 Sept. 4 Oct. 14	57.1 57.2 57.1 57.1 57.3 57.4 57.5 57.7 57.3	Sept. 14 Oct. 17 Nov. 2 Dec. 13 Jan. 16, 1951 Feb. 14 Mar. 20 Apr. 18 May 4 June 14	59.3 58.5 58.40 58.0 58.2 56.7 57.6 58.06 57.87 59.05
Nov. 26, 1940 June 12, 1941 Nov. 13 May 7, 1942 Nov. 27 May 13, 1943 Dec. 22 Apr. 21, 1941 May 4, 1945 Nov. 27	55.93 56.86 56.65 56.92 3 56.77 56.94 4 56.74 5 56.76	Nov. 12 18 29 Dec. 11 Jan. 7, Feb. 16 Mar. 11 Apr. 15 May 14 June 14	57.0 56.9	July 18 Aug. 15 Sept. 13 Oct. 16 Nov. 27 Dec. 13 Jan. 22, 1957 Feb. 14 Mar. 13 Apr. 10	F7 0/
Apr. 25, 1946 July 29 Aug. 7 20 29 Sept. 5	b57.1 b57.2 b57.4 b57.3	July 13 Aug. 10 Sept. 14 Oct. 13 Nov. 18 Dec. 9	59.0 58.8 58.5 60.3 57.92 57.7	May 29 June 12 July 16 Aug. 21 Sept. 18 Oct. 16 Conf	59.49 62.29 59.76 59.80 59.57 59.40

7	14-	30C1	 Cor	++	ກາາ	66
- 1	/4-	TOUL	 -cor	11.1	nu	εu

Date	Water level	Date	Water level	Date	Water level
Nov. 25, 1952 Dec. 16 Jan. 16, 1953 Feb. 17 Mar. 17 Apr. 14 May 26 Nov. 12 Mar. 29, 1954	58.69 61.12 60.24 60.81 58.13 58.26 58.90 60.10 58.10	May 13, 1954 Nov. 16 Apr. 15, 1955 Sept.15 Dec. 9 Mar. 29, 1956 Nov. 5 Dec. 5 Jan. 2, 1957	58.50 59.30 58.98 59.28 58.89 58.68 66.10 59.42 59.21	Feb. 6, 1957 Mar. 6 Apr. 3 10 May 1 June 3 Mar. 25, 1958 Apr. 10	58.92 58.83 60.00 58.92 60.17 59.86 a58.95 a58.95

7/5-22N1 (M-7c). Depth 88.2 feet. Altitude about 2,715 feet. Records available: 1950-56, 1958. Records furnished: 1950, 1953-55, BR; 1956, F; 1958, GS.

0-+	07 1050	3	N 3.5	3.051	00 00	A	2	1056	2
	27, 1950		Nov. 15,	1954	90.00				dry
Nov.	5, 1953	89.70	Apr. 11,	1955	98.25	Feb.	26.	1958	dry
	10, 1954								Ü
May	10, 19,4	100.45	Dec.		94.10				

7/5-22N2 (M-7ca, alternate). Altitude about 2,715 feet. Records available: 1956-58. Records furnished: 1956-57, F; 1958, GS

	Apr. 3, 195	6 103.20 100.15	Apr. 29, 1957 Feb. 26, 1958		Apr. 7	, 1958	95.98
--	-------------	--------------------	--------------------------------	--	--------	--------	-------

7/5-22Rl (M-7b). Depth 127.5 feet. Altitude 2,710.4 feet. Records available: 1950, 1953-58. Records furnished: 1950, <u>BR</u>; 1953-58, <u>F</u>, except as indicated.

Oct. 27, 1950	105.5	Apr. 11, 1955 109.15	Apr. 29, 1957 108.46
Nov. 15, 1953		Dec. 5 107.70	Feb. 26, 1958 dry ² /
May 10, 1954		Apr. 3, 1956 al05.40	Apr. 7 alo6.76
Nov. 15	105.60	Dec. 17 105.3	

7/5-26Bl (M-7a, CDE-279). Formerly A. Edwards. Altitude 2,737.0 feet. Records available: 1918, 1950, 1953-58. Records furnished: 1918, GS;

1950. BR: 1953-58. F. except as indicated.

= 2 2 - 1 1 - 2 2 2 - 1 - 1 - 1		
Feb. 18, 1918 d171.0	Nov. 15, 1954 170.50	Dec. 17, 1956 169.57
Oct. 27, 1950 168.6	Apr. 11, 1955 168.80	Apr. 29, 1957 169.19
Nov. 5, 1953 169.0	Dec. 5 171.0	Feb. 28, 1958 a169.02
May 10, 1954 173.2	Apr. 3, 1956 a168.80	Apr. 7, 1958 al68.67

a. Measurement by Geological Survey.

b. Measurement by U. S. Bureau of Reclamation.

d. Measurement by California Department of Engineering.

8/4-20N1 (M-22). R. Fotia, formerly Lord. Depth about 50 feet. Altitude about 2,410 feet. Records available: 1930-32, 1934-47, 1951-58. Records from Geological Survey water-supply papers or from F. except as indicated.

r, except as 1	naicatea.			
	Water	Water		Water
Date	level	Date level	Date .	level
Dec. 13, 1930	12.0	Oct. 4, 1938 cl3.58	Apr. 30, 1946	12.97
Mar. 26, 1931	11.49	May 24, 1939 12.40	Jan. 8, 1947	13.5
Oct. 2	12.45	Nov. 24 13.74	Nov. 27, 1951	18.60
Nov. 5	12.25	May 24, 1940 12.82	Nov. 25, 1952	18.74
Jan. 13, 1932	11.52	Nov. 26 14.81	May 26, 1953	18.93
Mar. 8	11.01	June 12, 1941 12.95	Nov. 12	21.60
May 26	11.06	Nov. 25 13.87	May 13, 1954	21.70
Jan. 10, 1934	11.47	May 7, 1942 11.85	Nov. 17	20.30
Jan. 21, 1935	11.49	Nov. 27 14.13	Apr. 13, 1955	23.50
Nov. 12	12.48	May 14, 1943 12.62	Dec. 9	27.24
Mar. 26, 1936	11.80	Dec. 13 13.84	Mar. 29, 1956	26.96
Jan. 15, 1937	12.47	Apr. 21, 1944 12.61	Dec. 20	26.96
Dec. 8	13.15	Dec. 13 13.97	May 1, 1957	27.20
June 2, 1938	12.30	May 4, 1945 13.11	Mar. 25, 1958	a24.43

8/4-31D1 (M-19). Frank Delfino, formerly Smith, formerly F. H. Merrell. Depth about 89 feet. Altitude 2,464.6 feet. Records available: 1930-32, 1939-58. Records from U. S. Geological Survey water-supply papers or from F, except as indicated.

Haver - Suppry pa	perb or rro	il I o CACCPU as .	Litareacas		
Sept. 10, 1930 Dec. 13 Mar. 19, 1931 May 20 Aug. 5 Nov. 5 Jan. 7, 1932 Mar. 4 May 26 July 6	43.97 44.03 43.50 43.79 43.88 43.90 43.65 43.32 43.10 43.35	Apr. 25, 1946 July 29 Aug. 7 21 29 Sept. 5 16 23 30 Oct. 6	43.59 b43.8 b43.7 b43.9 b44.0 b44.3 b44.2 b44.1	Mar. 18, 1947 Apr. 8 30 May 13 20 26 June 9 24 July 8 22	b43.7 b43.6 b43.6 b43.6 b43.6 b43.6 b43.6 b43.7 b43.8
Dec. 8 Nov. 25, 1939 May 24, 1940 June 12, 1941 Nov. 25 May 7, 1942 Nov. 27 May 14, 1943 Dec. 31 Apr. 21, 1944	43.64 44.00 43.40 43.40 46.94 43.15 44.11 43.38 44.07 43.56	Oct. 15 21 28 Nov. 6 18 25 Dec. 2 17 Jan. 1, 1947 21	b44.3 b44.8 b44.2 b44.3 b45.0 b44.2 b44.2 b44.2	Aug. 7 Sept. 4 Oct. 14 Nov. 12 Dec. 11 Feb. 16, 1948 Mar. 11 Apr. 15 May 14 June 14	b43.8 43.9 44.1 44.3 44.2 43.9 43.9 43.7 46.30 47.8
Dec. 13 May 4, 1945 Nov. 27	44.17 43.57 44.21	Feb. 4 19 Mar. 4	b43.8 b44.1 b43.8	July 13 Aug. 10 Sept.14 Continu	45.8 41.5 39.3 ed

8/4-31D1.--Continued

	0/4-3101	Continued				
		Water		Water		Water
	Date	level	Date	level	Date	level
Nov. Dec.	17, 1949 16 14 9 .15	39.4 42.19 43.0 43.9 44.0 46.3 44.29 46.3 51.6 48.76	Nov. 7, 1950 Dec. 13 Jan. 16, 1951 Feb. 14 Mar. 20 Apr. 18 May 16 June 14 July 18 Aug. 15	48.6 47.1 46.7 46.3 46.0 45.49 46.27 45.09 46.87 46.53	July 16, 1952 Aug. 21 Sept.18 Oct. 16 Nov. 25 Dec. 16 Jan. 16, 1953 Feb. 18 Mar. 12 17	c59.53 50.7 46.46 48.79 48.94 51.5 49.10 52.83 56.84 55.54
Dec. Jan. Feb. Mar. Apr. June July Aug. Sept Oct.	24, 1950 15 15 19 15 12 15	47.4 47.0 46.6 46.8 47.3 49.2 48.5 46.8 47.5	Sept.13 Oct. 16 Nov. 27 Dec. 13 Jan. 22, 1952 Feb. 14 Mar. 13 Apr. 10 May 29 June 12	46.42 46.32 46.22 46.11 45.77 45.54 44.38 45.84 47.74	Nov. 12 May 13, 1954 Nov. 17 Apr. 13, 1955 Dec. 9 Mar. 29, 1956 Dec. 20 May 1, 1957 June 5, 1958	57.30 60.60 58.30 56.44 55.20 54.34 58.26 58.87 a56.96

8/4-31R1 (M-15). Fred Orebaugh, formerly Bleedsaw, formerly Carl McNew. Depth about 60 feet. Altitude about 2,450 feet. Records available: 1930-32, 1934-56, 1958. Records from U. S. Geological Survey water-supply

papers or from F. except as indicated.

papers or from	F, except	as indicated.			
Sept. 5, 1930 Dec. 13 Mar. 20, 1931 May 20 Aug. 4 Oct. 2 Nov. 5 Jan. 7, 1932 Feb. 23 Mar. 23	16.87 15.00 14.48 14.82 15.87 15.97 15.42 14.76 14.40 14.37		16.01 15.28 15.71 15.92 16.35 15.37 15.48 14.63 15.52 14.81	30 Oct. 6 15 21	16.6 16.7 16.7 16.6 16.6 16.4 16.3 16.1
June 23 Sept. 7 Jan. 10, 1934 Jan. 21, 1935 Nov. 12 Mar. 26, 1936 Jan. 14, 1937 June 21 Dec. 8 June 7, 1938	16.07 15.05 15.05 16.24 15.02 15.41 15.42	Dec. 22 Apr. 21, 1944 Dec. 13 May 4, 1945 Nov. 27 Apr. 25, 1946 July 29 Aug. 7 20 29	15.18 14.63 15.29 15.03 15.57 14.10 16.1 16.3 16.6	Nov. 25 Dec. 2 17 Jan. 1, 1947 21 Feb. 4 19 Mar. 5 18 Apr. 8 Continu	15.1 15.0 15.0 15.0

	8/4-31R1	Continued				
	Date	Water level	Date	Water level	Date	Water level
May	30, 1947 13 20 26	15.1 15.2 15.4 15.4	Jan. 17, 1949 Feb. 17 Apr. 14 June 16	15.9 16.5 15.4 17.2	Nov. 27, 1951 Dec. 13 Jan. 22, 1952 Feb. 14	17.30 17.89 16.61 16.59
June July	24	15.5 15.7 16.0 16.2	July 14 Aug. 18 Sept.15 Oct. 19	18.0 18.6 19.0 19.0	Mar. 13 May 29 June 12 July 16	16.35 17.86 17.15 17.99
Aug. Sept	7	16.4	Dec. 14 Jan. 24, 1950	17.7 17.0	Aug. 21 Sept.18	18.95 19.45
Oct. Nov. Dec. Jan. Feb. Mar. Apr. May June July	12 11 7, 1948 16 11 15 14 14	16.7 16.4 15.7 15.5 15.5 15.1 15.4 15.48 16.5	Feb. 15 Mar. 15 Apr. 19 May 4 July 12 Sept.14 Oct. 17 Nov. 7 Dec. 13 Jan. 16, 1951	16.8 16.6 17.9 16.07 17.85 18.45 18.85 17.95 17.80 16.95	Oct. 16 Nov. 25 Dec. 16 Jan. 16, 1953 Feb. 17 May 26 Nov. 12 May 13, 1954 Nov. 17 Dec. 9, 1955	19.65 18.12 20.16 17.29 18.03 18.54 21.07 18.82 22.32 22.94
Aug. Sept Oct. Nov. Dec.	.14 13 18	17.3 17.8 17.9 16.69 16.4	Feb. 14 Apr. 18 May 4 July 18 Oct. 16	16.65 16.41 15.64 18.08 18.72	Apr. 12, 1956 Dec. 20 Mar. 25, 1958	19.27 10.14 a19.97

8/6-14Q1. Elizabet 2,760.4 feet. Records avexcept as indicated.	h Astley. Depth aboailable: 1953-58.	out 310 feet. Altitud Records furnished: F	e ,
May 1, 1953 a191.17 Nov. 5 169 May 10, 1954 208.27 Nov. 15 206.82	Apr. 11, 1955 182 Dec. 5 196 Apr. 3, 1956 al95 Dec. 17 173	6.42 Apr. 7, 1958 5.72 Aug. 26	

10/6-5E3 Altitude about furnished: F	2,470 feet.	arr and Caillie Records avail	r. Depth at able: 1953	out 440 -58. Rec	feet. ords
Nov. 12, 1953 May 13, 1954 Nov. 17	221.30	Apr. 14, 1955 Dec. 12 Mar. 29, 1956	203.70	May 2,	1956 195.55 1957 249.66 1958 204.20

11/6-31Rl. Wilk. Altitude about 2,455 feet. Records available: 1955-

58. Records furnished: GS.

Date	Water level	Dat	e	Water level		Date	Water level
Sept. 30, Mar. 23, Oct. 30	1955 186.66 1956 184.57 181.11	Mar. 5, Nov. 6 Mar. 10,			Aug.	25, 1958	196.78

a. Measurement by Geological Survey.

b. Measurement by U. S. Bureau of Reclamation.

c. Pumping.

d. Measurement by California Department of Engineering.

e. Obstruction at 230 feet.

Table 6.--Drillers' logs of wells

Note: The term kaolin (also spelled koalin, kaoline, kalein, kalene, etc.) is used by some drillers in the Middle Mojave Valley area to describe a hard white calcareous clay commonly containing small solution channels that cause the material to be moderately water bearing.

6/4-6C1. Joe Villareal. Altitude about 2,630 feet. Drilled by David Engel in 1957. 8-inch casing, perforated from 100 to 145 feet.

Material	Thickness (feet)	Depth (feet)
Sand	3 8 6 12 8 15 13 3 9 10 2	38 41 49 55 67 75 90 103 106 115 125 127 143 145

6/4-6D6. J. P. Blankenship. Altitude about 2,600 f		
by David Engel in 1955. 8-inch casing, perforated from 9	4 to 12	7 feet.
Sand	4	4
"Hardpan"	6	10
Sand	15	25
"Hardpan"	6	31
Boulders	13	1414
Clay gravel	26	70
Clay, sand	8	78
Sand (water)	14	92
Clay	11	103
Sand (water)	24	127

129

6/4-6DlO. Wayne Murry. Altitude about 2,580 feet. Drilled by McDougall Well Drilling Co. in 1947. 8-inch casing to 100 feet, perforated from 70 to 100 feet.

Coarse dry sand	
7 77 7 -2 0 07	
Boulders and Clay 9	
Water-bearing sand 4 31	
Sandy clay 13	
Fine water-hearing sand 48	
Clay 27 75	
Clay	
Clay 3 95	
Sand 20 115	

6/4-6E4. H. H. White. Altitude about 2,620 feet. Drilled by C. C. Lackyard in 1947. 6-inch casing, perforated from 235 to 265 feet.

Material	Thickness (feet)	
Loose rocks and gravel (same as surface)		30
Cemented conglomerate with large boulders Brown sand-clay		44 63
Rocks and sand (hard)	3	66
Sandy clay	11 9	77 86
Cemented conglomerate (hard)	32	118
Brown clay	38	156
Clay with 6-inch beds of rock		165 180
Hard sandy clay with 6-inch streaks of rock as much as 4 feet apart	18	198
"Gumbo" (brown and white clay)		225
Water gravel	21 19	246 265

6/4-6E6. R. D. Workman. Altitude about 2,580 feet. Drilled by C. C. Lackyard in 1947. 6-inch casing zero to 104 feet, perforated from 60 to 100 feet.

Same as surface	10	10
Cemented conglomerate	31	41
Clay	11	52
Water in sandy clay	3	55
Clay	5	60
Water gravel	5	65
Clay with hard sand and 1- to 12-inch boulders	5	70
Water gravel	10	80
Clay	6	86
Water gravel	10	96
Fine sandy clay	8	104

6/4-18F2. J. G. Ivy. Altitude about 2,610 feet. Drilled by Baldy Mesa Well Drillers in 1950. 6-inch casing, perforated from 96 to 120 feet.

Surface sand and black loam	22	22
Surface water	7	29
Boulder	3	32
Cemented brown sand	19	51
Brown sand and clay, thin streaks of water	9	60
Cemented conglomerate	2	62
Brown clay	14	76
Water gravel	6	82
Brown clay	3	85
Water gravel	7	92
Cemented sand	11	103
Loose packed gravel and rocks, water	17	120

6/4-18Pl. Riverside Cement Co., well 53-1. Altitude about 2,610 feet. Drilled by H. H. Ley in 1953. 14-inch casing, perforated 25 to 75 feet.

Material	Thickness (feet)	Depth (feet)
Soil	3 6 28 9 9	3 6 12 40 61 70 73 78

6/4-18P2. Riverside Cement Co., well 52-1. Altitude about 2,610 feet. Drilled by H. H. Ley in 1952. 14-inch casing, perforated from 23 to 73 feet.

23 to 75 leet.		
Soil, black silt, and fine sand	8	8
Black "swamp" mud and silt	10	18
Coarse gray sand, 5 percent 3/4-inch gravel, 10 percent black silt	9	27
Organic matter, vegetation	í	28
Coarse gray sand, 10 percent black silt	9	37
Coarse gray sand, 20 percent 3/4-inch gravel	31	68
Coarse gray sand, 20 percent 3/4-inch gravel, and	E	72
rock to 8-inch diameter Tough yellow clay, as on hillside	Į,	77
TOURIT JETTOW CTAY, as OIL HITTISTICE		11

6/4-19A2. Riverside Cement Co., well 52-2. Altitude about 2,650 feet. Drilled by H. H. Ley in 1952. 12-inch casing, perforated from 40 to 118 feet.

40 to 110 reet.		
Soil, sandy clay	18	18
Tough yellow clay	4	22
Coarse sand and gravel, few 4-inch rocks	16	38
"Bright" water sand, 50 percent coarse, 50 percent fine -	12	50
Same as above, but firm	3	53
Tough yellow clay	10	63
Sand, rock and gravel, water	2	65
Yellow sandy clay	2	67
Dirty fine sand and \(\frac{1}{4}\)-inch gravel, small amount of	_	- 1
water	1	68
water	7	75
Yellow sandy clay	(
Sand, gravel, and rock	2	77
Tough yellow clay	3	80
Conglomerate, sharp rock, clay and lime streaks	7	87
Blue clay	3	90
Decomposed granite, as on hillside	26	116
Loose rock, some 3/4-inch river-washed gravel	2	118
Granite boulders impounded in "hillside calechi." Very		
hard and difficult to drill	3	121

6/4-19A3. Oro Grande Grammar School. Altitude about 2,670 feet.

Drilled	ру	J.	S.	Gobar	in	1951.	10-inch	casing.
---------	----	----	----	-------	----	-------	---------	---------

Material	 ickness (feet)	Depth (feet)
Soil and some rock	6 6 28	20 27 48 66 72 78 106 114

6/4-19B2. T. H. Wobermin. Altitude about 2,630 feet. Drilled by Everett Reed in 1956. 8-inch casing.

Everett need in 1990. O-men casing.		
Dirt	26	26
Black clay	8	34
Gravel, to 12 inches	4	38
Rusty brown clay		58
Clay cemented sand		182
Rocks, 6 inches		185
"Sandstone"	11	196
Gravel, clay cemented	6	202
Rocks cemented in clay		206
Sand, clay cemented		216
Gravel, clay cemented	4	220
, , , , , , , , , , , , , , , , , , , ,		

6/4-19E1. Riverside Cement Co., well 54-4. Altitude about 2,613 feet. Drilled by Roscoe Moss Co. in 1954. 16-inch casing, perforated from 20 to 88 feet.

Sand and gravelClay, sandy clay		27
Layers of gray clay and sand		40 43
Gray sand and gravel	22 35	65
bandy clay and graver	37	100

6/4-19F1. Riverside Cement Co., well 54-1. Altitude about 2,619 feet. Drilled by Roscoe Moss Co. in 1954. 16-inch casing, zero to 97

Material	Thickness (feet)	Depth (feet)
Sand	2 \$\frac{1}{2} \frac{1}{2}	14 57 ¹ / ₂ 8 13 16 28 35 44 53 58 65 76 100

6/4-19H1. H. H. Ley. Altitude about 2,640 feet. owner in 1955. 14-inch casing, perforated from 24 to 40	Drilled by feet.	
Soil	0	8
Sand, clay, 3/4-inch sharp rock		21
Sandy clay	9	30
Sand, gravel, and 4-inch rocks		34
Sand, gravel, rock, and clay ribs	7	41

feet. Drilled by Roscoe Moss Co., in 1954. 16-inch casing, perforated from 20 to 88 feet. Gray silty clay -----... 5 8 Cray silt and sand -----3 Gray sand -----15 Brown sand, to 3-inch gravel -----8 23 Gray silty clay -----13 36 Erown and gray sand -----46 10 53 Cray sand to 8-inch gravel (tight) -----.7 Gray clay -----55 2 Brown clay and embedded gravel -----84 29 Tight sand to 3-inch gravel -----3 87

13

100

6/4-19Pl. Riverside Cement Co., well 54-5. Altitude about 2,622

6/4-20M2. T. J. McLaughlin. Altitude about 2,680 by C. C. Lackyard in 1947. 6-inch casing, zero to 72 fee from 50 to 70 feet.	feet. Di	rilled rated
Sirface	10	10
Sandy clay	10	45
Hard gray sand	<u>.</u>	55 56 60
Cemented conglowerates	12	72

Brown sandy clay and embedded gravel -----

93

6/4-20M3. J. A. Williams. Altitude about 2,690 feet. Drilled by Jess Newman in 1949. 6-inch casing.

Material	Thickness (feet)	Depth (feet)
Loose mountain-float gravel		60 70
Coarse, hard-packed gravel		76

6/4-20M7. B. Cuddy and H. McKeen. Altitude about 2,710 feet. Drilled by Jess Newman in 1947. 6-inch casing.

DI LILECT O, GODD HOWHOLD IN I. J. 1. O-INCH CABING.		
Granite float	42	42
Hard sand and some gravel	10	52
Loose gravel and clay		67
Packed hard white sand	13	80
Sandstone	12	92
Loose coarse granite sand in water	20	112

6/4-29M6. Riverside Cement Co., well 54-2. Altitude about 2,647 feet. Drilled by Roscoe Moss Co. in 1954. 16-inch casing zero to 74 feet, perforated from 20 to 64 feet.

110m 20 00 04 1000:		
Sand and small gravel	22	22
Sand and gravel to 3 inches	10	32
Gray sandy clay	6	38
Sand to 8-inch gravel, layers of clay	7	45
	23	68
Clay and granite boulders	31	99

6/4-29M7. Riverside Cement Co., well 54-3. Altitude about 2,649 feet. Drilled by Roscoe Moss Co. in 1954. 16-inch casing zero to 53 feet, perforated from 20 to 40 feet.

Sand	2	2
Silt	2	4
Sand	5	9
Silt, sand, and gravel	7	16
Gray silt, sand, and gravel	10	26
Brown silt, sand, and gravel		34
Tight gray sand		37
Gray clay and gravel to 8 inches		48
Clay and boulders	10	58

6/4-29-2. Victorville Military Airport, well 1. Altitude about 2,750 feet. Drilled by Roscoe Moss Co. in 1941. 16-inch casing, perforated 50 to 88 feet.

Material Tr	nickness (feet)	Depth (feet)
Sand and silt	12 8 5 11 4 2 3 6 9 8 2 19	12 20 25 36 40 42 45 51 60 68 70 89

6/4-29-3	. Victorville	Military Ai	rport, wel	1 3. Alt	itude about
2,660 feet. D	rilled by Rosco	e Moss Co.	in 1942.	16-inch c	asing,
perforated 43					

Gray clay	8	8
Fine to coarse clay	5	13
Gray sandy clay	28	41
Water sand to 3-inch gravel	2	43
Gray clay	ı	. 44
Water sand to 2-inch gravel	3	47
Gray sandy clay	ĭ	48
Water sand and gravel layers	6	54
Water gravel to 4 inches	19	73
Brown clay, embedded gravel	4	77
Brown sandy clay	23 :	. 100

6/4-30Gl. George Air Force Base, well 5. Altitude about 2,650 feet. 16-inch casing.

Brownish clay 19 100	Topsoil, sand	10 20 20 21	10 20 40 60 81 100
----------------------	---------------	----------------------	-----------------------------------

6/4-30K2. George Air Force Base, well 4. Altitude about 2,650 feet.

Material	Thickness (feet)	Depth (feet)
andy silt	14	14
ine gray sand	4	18
coarse brown sand	17	35
ine dark sand		37
'ine dark sand and gravel to 3 inches	8	45
ray sand, some gravel	15	60
ine gray muddy sand	6	66
Brown sand, gravel, and bouldersBrown sandy clay	12 20	78 98
6/4-30P2. Adelanto Community Service District. 2,650 feet. 16-inch casing.		about
Soil		15
Sand		23
Gravel		33
Sand	10	43
2,645 feet. Drilled by Roscoe Moss Co. in 1942. 26- perforated. Casing pulled. Gray clay	5 9	5 14
perforated. Casing pulled. Gray clay	5 9 9 10	5, not 14 23 32 42
Gray clay	5 9 9 10	5, not 14 23 32 42
perforated. Casing pulled. Gray clay Gray and brown silt Fine to coarse gray sand Sand to 3-inch gravel (rounded)	5 9 9 10 1	5, not 14 23 32 42 43
Gray clay	5 9 9 10 1 4 53	5, not 5, 14, 23, 32, 42, 43, 47, 100
Gray clay	5 9 9 10 1 4 53	5, not 5, 14 23, 32 42 43 47 100 led by et.
Gray clay	5 9 9 10 1 53 feet. Dril 44 to 64 fe	5, not 5, 14 23 32 42 43 47 100 led by et.
Gray clay	feet. Dril 4 to 64 fe 6 4 14	5, not 5, 14 23 32 42 43 47 100 led by et.
Gray clay	feet. Dril hh to 6h fe 6 4 6 4	5, not 5, 14 23 32 42 43 47 100 led by et.
Gray clay	feet. Dril hh to 6h fe 6 4 6 4	9, not 5 14 23 32 42 43 47 100 led by et. 6 26 45
Gray clay	feet. Dril 44 to 64 fe 4 14 2 19 20	9, not 5 14 23 32 43 47 100 led by et. 6 10 26 45
Gray clay Gray and brown silt Fine to coarse gray sand Sand to 3-inch gravel (rounded) Brown clay Fine to coarse sand Brown sandy clay Brown clay 6/4-32Gl. Donald Doran. Altitude about 2,750 H. H. Ley in 1955. 10-inch casing, perforated from Soil Coarse sand Tough yellow clay Coarse sand Sandy yellow clay Decomposed granite (loose) Bedrock 6/4-32G2. Donald Doran. Altitude about 2,760	feet. Dril 444 to 64 fe 4 14 53 feet. Dril 445 to 64 fe 4 14 2 19 20 3	5, not 5, 14 23, 32 42 43 47 100 led by et. 65 68
Gray clay	feet. Dril 4	9, not 5 14 23 32 42 43 47 100 led by et. 65 68
Gray clay	feet. Drill 44 to 64 fe 19 20 3	1000 led by et.

6/4-32Nl. Riverside Cement Co., well 52-5. Altitude about 2,765 feet. Drilled by H. H. Ley in 1952. 10-inch casing, perforated from 144 to 174 feet.

Soil	Material	Thickness (feet)	Depth (feet)
Yellow clay	Clean sand, medium coarse (water) Sandy yellow clay (tough) Coarse clean sand (water) Coarse sand and clay ribs (water) Tough yellow clay Coarse sand and clay ribs (water) Tough yellow clay Coarse bright sand (water) Yellow sandy clay Tough yellow clay Loose clean sand Hard cemented sand Tough yellow clay Green clay Yellow clay Coarse sand, 10 percent \(\frac{1}{4}\)-inch gravel (water) Tough yellow clay Coarse gray decomposed granite, hard and difficult to drill	3 35 1 19 19 1 5 2 9 5 2 3 2 1 1 8 3 7 2 43	3 38 39 58 59 64 66 75 80 82 85 87 88 89 97 100 137 139 182

6/4-33P2. Southwest Portland Cement Co., well 7. Altitude 2,685.4 feet. Drilled by Baldy Mesa Well Drillers in 1950. 12-inch casing, perforated from 18 to 36 feet, 54 to 108 feet, and 126 to 144 feet.

Silt and brown sandy clay	15	15
Brown medium gravel (surface water)	18	33
Hard cemented brown sand, niggerhead boulders	7	40
Cemented brown sand	18	58
Loose conglomerate brittle brown sandy clay (water)	13	71
Brown sandy clay	12	83
Brittle conglomerate (water)	19	102
Cemented sand (narrow steady water)	15	117
Hard cemented sand and niggerhead	_ 26	143
Brittle conglomerate (water)	8	151

6/4-33Rl. C. L. Abbey. Altitude about 2,700 feet. Drilled by McDougall Well Drilling Co. in 1950. 14-inch casing to 103 feet, 12-inch casing 103 to 262 feet, perforated: 156 to 160, 176 to 188, 212 to 215, and 232 to 252 feet.

Material	Thickness (feet)	and the second second
Sandy loam	4	4
Rocky sandy clay		16
Brown sandy clay		23
Fine light gray sand		25
Water sand, coarse light-gray gravel	43	68
Good coarse water sand and small gravel with some	23	00
thin layers of sandy clay		99 103
Fine sand		106
Coarse sand and small gravel		120
Coarse sand, large gravel and boulders		134
Soft sandy light-brown clay		156
Large gravel and boulders		160
Brown sandy clay		176
Coarse sand, small gravel		188
Brown sandy clay		212
Coarse sand, small rocks		215 232
Coarse sand, small gravel		252
Brown sandy clay		262

6/5-4Nl. Walter Bros. turkey ranch. Altitude about 2,765 feet. Drilled by David Engel in 1956. 8-inch casing, perforated from 71 to 101 feet.

Sand"Claeche"	1 4	1 5
Sand	10	15
Clay	5	20
Sand	10	30
Sand and clay	12	42
Clay and sand	15	57
Hard sand	15	72
Hard sand and clay	16	88
Sandstone	3	91
Sand (water)	8	99
Clay	5	104

6/5-6P2. Elmer Conder. Altitude about 2,760 feet. Drilled by David Engel in 1956. 8-inch casing, perforated from 45 to 80 feet.

Material	Thickness (feet)	Depth (feet)
Sand "Claechi" Clay-sand Sand Sand-clay Hard sand Clay Gravel-sand Clay	3 - 11 - 5 - 25 - 9 - 5	1 4 15 20 45 54 59 65 72 80

6/5-8Dl. Burton and Blake. Altitude about 2,770 L. F. McFadden in 1951. 8-inch casing, perforated from	feet. 61 to	Drilled by 94 feet.
Top formation	•	8
Sand and clay	42	50
Hard clay and sand	13	63
Clay and sand	13	76
Sand	17	93
Clay	3	96

6/5-9Bl. L. L. Shelton. Altitude about 2,780 feet		
David Engel in 1955. 8-inch casing, perforated from 97	to 133	feet.
Sand	1	1
"Claecha"	3	4
Clay-sand	16	20
Sand	8	28
Sand-clay	64	92
Hard sand	5	97
Sand	13	110
Clay	4	114
Sand	7	121
Clay	12	133

6/5-28-2 (CDE-202). E. H. Richardson. Altitude 2 12-inch casing.	,879.5 f	eet.
Soil, sand, and clay	114 46 63 12 45 23 15 22 22 Cont	114 160 223 235 280 303 318 340 362

Material	Thickness (feet)	Depth (feet)
Sandy clay		372
demented sand		387
Semented clay		436
ater sand		498
lay		509
ater sand		515
lay	- 22	537
ater sand	18	555
emented clay	- 28	583
later sand	6	589
lay	- 6	595
7/4-6L4. M. K. Lewis. Altitude about 2,455 feet.	om 51 to 10	7 feet.
Surface soil		8
Sand		12
Dirty sand	15	27
Clean coarse sand and heavy gravel. Bottom of		20
Mojave River fill		38
Bright gray sandy clay	22	60
Sand and gravel		63 65
Buff clay		78
Fine sand and gravelBuff clay		80
Coarse sand and gravel		87
Buff clay	4	91
Sand and gravel		99
Buff clay		102
Sand and gravel with clay bottom		107
7/4-6Rl. J. Leckwark. Altitude about 2,485 feet McDougall Well Drilling Co. in 1947. 12-inch casing, 43 to 63 feet.		by
Washed gravel, clay	- 12	12
Brown sand, clay	- 30	42
Fine sand, water-bearing	_ 4	46
Coarse sand and small gravel	- 19	6
7/4-6R5. J. C. Tobin. Altitude about 2,470 feet J. M. Scoggin Drilling Co. in 1954. 8-inch casing, pe 18 to 36 feet.	. Drilled rforated fr	by
10 to 30 feet:		
Tonsoil	- 5	
TopsoilBoulders	- 5 - 13	1

7/4-18D2. F. J. Harris. Altitude about 2,475 feet. Drilled by McDougall Well Drilling Co. in 1947. 12-inch casing, perforated

Material Material	Thickness (feet)	Depth (feet)
Sandy soil Fine sand Sand and gravel Decomposed granite Large gravel and sand Light sandy clay Fine sand Light sandy clay Fine sand, small gravel Coarse sand, gravel Sandy clay Coarse sand Sandy clay Coarse sand Sandy clay Coarse sand Coarse sand Coarse sand Sandy clay Coarse sand Coarse sand Coarse sand Coarse sand Coarse sand, some small gravel	8 2 12 11 33 17 8 5 12 10 7	9 17 25 27 39 50 61 94 111 119 124 136 146 153 215 217

7/4-18G1. W. E. Cole. Altitude about 2,520 feet. Drilled by J. S. Gobar in 1950. 10-inch casing, perforated from 75 to 85 feet and 90 to 95 feet.

Topsoil	8	8
Decomposed granite	30	38
Decomposed granite, well cemented	12	50
Cemented rock	8	58
Dirty gravel and rock	17	75
Good gravel	10	85
Brown clay	5	90
Gravel	10	100

7/4-19Q1. J. B. Hammond. Altitude about 2,600 feet.	Drilled	by
Jess Newman in 1950. 6-inch casing, perforated from 128 to	136 feet	
"Mountain-float rock"	48	48
Gravel	22	70
Sand	11	81
"Mountain" clay	11	92
Mixed clay and gravel	8	100
Gravel with some sand	36	136

7/4-1902. M. L. Kinney. Altitude about 2,590 feet. Drilled by Jess Newman in 1951. 6-inch casing, perforated from 104 to 112 feet.

"Mountain-float" rock	60	60
Loose boulder formation	20	80
"Mountain" clay	10	90
Water gravel and coarse sand	22	112

7/4-31El. A. C. Frisbee. Altitude about 2,560 feet. Drilled by

Everett	975 5		20-6	0	
EVERETT	Reed	าำท	1056	B-inch	cecing.
7467600	AICCU	444	エクノン・	8-inch	canting.

Material Th	ickness (feet)	Depth (feet)
Soil with a little gravel and a few 12-inch rocks Loose 10-inch gravel Gravel (up to 6 inches with clay cement) Loose water gravel	45 12 24 3 6	45 57 81 84 90

7/4-31Pl. William Hawson. Altitude about 2,615 feet. Drilled by J. S. Gobar in 1951. 6-inch casing, perforated from 97 to 127 feet.

Gravel (dry)	38	38 62
Decomposed granite and clay-rock reefs Dry sand	11	73 82
Decomposed granite and clay-rock reefs	10 34	92 126
Gravel (water)	5	131

7/5-24Pl. H. H. Hill. Altitude about 2,505 feet. Drilled by H. H. Ley in 1951. 14-inch casing, perforated from 21 to 111 feet.

Soil and black silt	23 17 1 3 2 1 5 9 4 7 1 15	23 40 41 44 46 47 52 61 65 72 73 88
Coarse sand and gravel, rock to 4 inches, several thin clay ribs, condition clean and free	16 3 6 8	104 107 113 121

7/5-25Al. L. L. Weiss. Altitude about 2,515 feet. Drilled

Material	Thickness (feet)	Depth (feet)
uicksand	2 4	38 40 44
lay	10	57 67 94
andy clay	31	125 152
oft clay	24 9	176 185 195
lay	10	
7/5-25A4. L. L. Weiss. Altitude about 2,510 fe . S. Gobar in 1951. 8-inch casing, perforated 42 to	80 feet.	
opsoil		6 8
lack muck	4	12 40
ravel, small	16	56
layravel	10	58 68
lay	2 8	70 78
Clay and gravel	11	89
7/5-25G2. L. L. Weiss. Altitude about 2,510 fe J. S. Gobar in 1952. 14-inch casing, perforated zero		
Top sand		2
Sand and silt	2	14 14
Coarse sand	4 ⁻	18 24
Sandy clay	12	36
Coarse sandBrown clay	6 10	42 52
•	18	70 72
Sand and gravelBrown clay	_	
7/5-25G3. L. L. Weiss. Altitude about 2,510 f	eet. Drille	ed by
T G Gaber de 1051 10 inch coging	eet. Drille	ed by 4

7/5-25G4. L. L. Weiss. Altitude about 2,515 feet. Gobar in 1950. 14-inch casing.	Drilled 1	by J. S.
Material	Thickness (feet)	Depth (feet)
Topsoil	7 11 12 17 10	7 18 30 47 57 58
7/5-25G6. L. L. Weiss. Altitude about 2,515 feet. J. S. Gobar in 1951. 14-inch casing, perforated from 30	Drilled to 44 fee	
Topsoil Sand Black soil "Quick" silt Gravel "Quick" silt Gravel (cut) Silt	2 1 5 4 16 2	2 3 8 12 28 30 42 48
7/5-25H1. R. M. Hillwig. Altitude about 2,520 fee J. S. Gobar in 1951. 14-inch casing, perforated from 24 and 82 to 92 feet.		
Topsoil	1 7 7 4 10 16 16 8 10 24 10 10 10	2 3 10 14 24 40 48 72 82 92 96
7/5-25K4. A. Gysber. Altitude about 2,525 feet. Gobar in 1928. 12-inch casing.		J. S.
Sandy soil	8 8 2 12 13 5	8 16 18 30 43 48 73

Sandy clay -----

75

7/5-25K5. A. Gysber. Altitude about 2,525 feet. Drilled by

Material	Thickness (feet)	Depth (feet)
Topsoil		2 3
Sand	20	28 30
Black sandy clay	. 18	48 49
Gravel		60

8/4-20K2. F. F. Abken. Altitude about 2,405 feet. perforated from 12 to 49 feet.	14-incl	h casing,
No log available (old dug hole) Good gray gravel	27 9 5 8 2 5	27 36 41 49 . 51 56

8/4-30A2. Judge Volks, formerly G. E. Watkins. Altitude about 2,415 feet. Drilled by Scoggin Drilling and Development Co. in 1951. 20-inch casing, perforated from zero to 90 feet.

Topsoil	10	10
Fine sand and streaks of gravel	15	25
Water gravel and boulders	65	90

8/4-30Fl. C. Smith, formerly G. E. Watkins. Altitude about 2,445 feet. Drilled by Scoggin Drilling and Development Co. in 1951. 14-inch casing, perforated from 90 to 364 feet.

Sandy soil	12	12
Gravel and boulders	73	85
Blue shale	5	90
Gravel and boulders	27	117
Blue shale	6	123
Gravel, large	62	185
Red shale	5	190
Grave)	27	217
Red shale	6	223
Gravel and boulders	132	355
Shale	9	364

8/4-32C2. Atchison, Topeka, and Santa Fe Ry. Altitude about 2,430 feet. Drilled by S. W. Burkhart in 1914. 12-inch casing in 1914, replaced by 10-inch casing in 1944.

Material	Thickness (feet)	Depth (feet)
Soil	18	18
Sand and gravel	10	28
Clay	22	50

8/5-7Fl. U. S. Government, formerly Adelanto Development Corp., well G3. Altitude about 2,685 feet. Drilled in 1956. 11-inch casing to 100 feet and 7-inch casing to 2,500 feet, no perforations.

reet and 7-inch casing to 2,500 feet, no perforation	ons.	
Sand, coarse grained	650	650
Sand, medium to fine grained		1,300
Shale, buff, silty, micaceous (cored)		1,330
White limy quartz and feldspar conglomerate (cored		1,340
Tan micaceous siltstone (cored)		1,350
Sand, buff and gray to green shale		1,620
Buff, tan, and pink silty shale		1,670
Light gray very fine crystalline lime		1,690
Light gray-buff to brown shale, increase in sand -		1,730
Shale as above; white crystalline lime, 40 percent		-,150
quartz sand		1,800
Buff, tan, and green shale, streaks of sand	*	1,845
White crystalline lime and green and gray shale		1,886
Buff to brown, gray-green, and blue shale		1,896
Gray-green to brown shale (cored)		1,915
Gray-green lime (cored)		1,930
Blue calcareous shale (cored)	10	1,940
Gray-green to blue waxy shale (cored)		1,950
Gray to green shale, and thin gray limy shale	10	1,960
Green to gray-green shale	10	1,970
Olive-green to brown shale	5	1,975
Tan to blue shale	10	1,985
Green, gray, and brown shale		1,995
Brown to green micaceous shale (cored from 1,995 t	0	,,,,,
2,150 feet)	10	2,005
Gray-green to blue-green limy shale	10	2,015
Gray-green slicken-sided shale	10	2,025
Green to blue shale	10	2,035
Gray-green limy shale	10	2,045
Gray-green limy siltstone, 4- and 3-foot white		
chalky lime	10	2,055
Gray-green siltstone	5	2,060
Gray-green limy shale and 5-foot olive-green limy		
siltstone	6	2,066
Gray-green to gray sandy shale and siltstone,		
slightly calcareous, has a 45° bedding plane		2,076
Olive-green to olive-brown micaceous siltstone	10	2,086
Gray micacecus shale	10	2,096
Yellow to green shale	9	2,105
		Continued

8/5-7Fl.--Continued

Material	Thickness (feet)	Depth (feet)
Yellow to green shale, with micaceous siltstone Green micaceous sand	- 15	2,115 2,130 2,140
Gray micaceous sand, gray to tan siltstone		2,150
Buff sandy siltstone and green silty shale with streak of sand	./0	2,370
Quartz and feldspar sand, green shale, trace of gray limestone		2,400 2,539

8/5-14H1. Mrs. Turuo, formerly Adelanto Development Corp., well G2. Altitude about 2,680 feet. Drilled in 1955. 11-inch casing zero to 105 feet, uncased hole 105 to 2,085 feet, not perforated.

To To Too to thought hold Too to The Too Too Too Too Too Too Too Too Too To		
Sandy shale and streaks of clay	102	102
Sandy clay, streaks of hard clay	448	550
Sandy clay and boulders	660	1,210
Hard sand and volcanic rock	152	1,362
Hard sandy clay	188	1,550
Sandy boulders	102	1,652
Brown sandy clay and boulders (nonmarine sediments)	433	2,085

8/6-12Bl. U. S. Government, formerly Adelanto Development Corp., well Cl. Altitude about 2,705 feet. Drilled in 1954. ll-inch casing zero to 101 feet, uncased hole 101 to 4,122 feet, not perforated.

Sandy clay	101	101
Yellow sandy clay	80	181
Shale and hard shells	71	252
Brown shale	i8	270
Sandy yellow clay	70	340
Sand and gravel	10	350
Hard clay and shells	75	425
Hard gray shale	65	490
Hard sticky brown shale	51	541
Gray shale	44	585
· · ·		
Conglemerate and streaks of gray shale	137	722
Gray shale, streaks of lime	31	753
Gray shale, streaks of brown shale	122	875
Blue-gray shale, streak of lime	37	912
Hard sandy gray shale	129	1,041
Blue-gray shale, streaks of sand	42	1,083
Very hard sandstone	5	1,088
Gray shale, streaks of hard green sand	72	1,160
Sand shale and boulders	97	1,257
Hard brown sandy shale	86	1,343
Hard gray shale, streaks of brown	110	1,453
		ntinued

8/6-12BlContinued		
Motomiol	ckness feet)	Depth (feet)
Blue sandy shale	76	1,529
Hard brown shale	82	1,611
Gray shale and hard sand (cored)	15	1,626
Hard gray shale	12	1,638
Hard brown and gray shale	112	1,750
Hard gray shale	23	1,773
Sticky gray shale	8	1,781
Gray sandy shale	88	1,869
Gray and brown shale	31	1,900
Hard sandy gray shale	43	1,943
Gray and brown shale	10	1,953
Hard brown shale	34	1,987
Hard shale and boulders	62	2,049
Brown shale, red and gray sand (cored)	20	2,069
Brown shale and sand	115	2,184
Brown and gray shale	55	2,239
Hard granite-like sand	36	2,275
Hard brown sand	35	2,310
Brown sandy shale	18	2,328
Brown sandy shale (cored)	16	2,344
Hard sandy brown shale	55	2,399
Very hard granite-like conglomerate	10	2,409
Hard gray granite-like conglomerate	34	2,443
Very hard brown shale	16	2,459
Granite	4	2,463
Granite and hard brown shale	82	2,545
Conglomerate (cored)	5	2,550
Hard brown shale and granite	117	2,667
Hard gray and brown shale	31	2,698
Hard brown shale with gray and green streaks	126	2,824
Conglomerate (cored)	13	2,837
Shale and granite	29	2,866
Shale, granite and fractures	29	2,895
Brown shale and hard sand	68	2,963
Conglomerate, shale, granite sand	76	3,039
Conglomerate, streaks of quartz	96	3,135
Gray shale, granite streaks	23	3,158
Conglomerate	63	3,221
Hard sand, gray shale, conglomerate	66	3,287
Conglomerate	32	3,319
Hard sandstone and boulders	23	3,342
Hard sand, gray shale	. 92	3,434
Conglomerate (cored)	. 17	3,451
Hard sandy shale	80	3,531
Fine sand, pebbles and silt	40	3,571
Hard sand	57	3,628
Hard condy chale	- 81	3,709
Hard sand, streaks of "bentonite"	97	3,806
Hond cond	. 28	3.834
Hard green sandy shaleSandy shale	. 29	3.863
Sandy shale	26	3,863 3,912
Hard sand and granite streaks	20	3,912
Hard and tough brown shale	39	3,951
GraniteGranite conglomerate (cored 3 feet)	125	4,076 4,122
100		,, 244

10/6-5E1. Darr and Caillier, formerly George Beecher. Altitude about 2,475 feet. Drilled in 1942. 8-inch casing, perforated 200 to 400 feet.

400 feet. Material	Thickness (feet)	Denth (Feet)
Topsoil	10	2.0
Gravel	5	1.5
Gravel in red clay	5	20
Red clay		30
Sandy shale		03
Hard shale		120
Sandy shale		190 212
Shale and sand		228
Water gravel		234
Water gravel and shale		244
Water gravel		250
Grayish shale		256
Shale		265
Broken shale and gravel		272
Water gravel		278
Shale with some gravel		310
Shale		400
Boulders		405
		1.20
Shale	12	417
ShaleGravel		417
Shale	13	
Gravel	13 20 tude about 2,475 5 280 feet. 30 30 30 30 30 30 30 38 42 33	430 450
Shale 10/6-5E5. California Electric Power Co. Altitulation casing, perforated from 45 to 105 and 200 to Undescribed Rock, packed and gravel Clay and sand Gravel and clay Gravel and sand, packed Sand and gravel, water Clay, yellow 10/6-5F1. Carl Siders. Altitude about 2,475 H. H. Ley in 1949. 10-inch casing, perforated from Soil, sandy clay, and tough clay ribs Coarse sand, yellow clay Loose sand and gravel, rock Conglomerate, yellow clay, rocks, lime Cemented sand Granite, semidecomposed	13 20 tude about 2,475 280 feet. 30 30 38 42 33 22 feet. Drilled b 210 to 234 feet 195 3 1	430 450 feet. 30 120 150 188 230 263 285
Shale 10/6-5E5. California Electric Power Co. Altitle-inch casing, perforated from 45 to 105 and 200 to Undescribed Rock, packed and gravel Clay and sand Gravel and clay Gravel and sand, packed Sand and gravel, water Clay, yellow 10/6-5F1. Carl Siders. Altitude about 2,475 H. H. Ley in 1949. 10-inch casing, perforated from Soil, sandy clay, and tough clay ribs Coarse sand, yellow clay Loose sand and gravel, rock Conglomerate, yellow clay, rocks, lime	13 20 tude about 2,475 280 feet.	430 450 feet. 30 120 150 188 230 263 285 y

10/6-20M1 (DFC-1). U. S. Air Force, test well. Altitude about 2,700 feet. Drilled by the Department of the Interior in 1955. Not cased.

Material	hickness (feet)	Depth (feet)
Sand and silt composed of quartz feldspars and biotite. This unit probably consists of poorly consolidated silt, sand, friable cobbles and friable boulders	- 128	128
pebbles, cobbles, and boulders of quartz monzonite	- 12	140
Conglomerate, well-consolidated, calcareous; composed of silt, sand pebbles, cobbles and boulders	- 1,011	1,151
Sand, greenish-gray, slightly calcareous, subangular, very fine to very coarse; contains numerous granules and pebbles		
argillaceous, very fine to medium, cross- bedded	_ 2	1,164
very fine to very coarse; contains many granules Sand, greenish-gray, slightly calcareous, very fine,	- 5	1,169
crossbedded	2	
to very coarse; contains many granules		·
medium to very fine	- 2	1,173
calcareous, very fine to very coarse; contains many granules and some pebbles	- 8	1,181
very fine to very coarse; contains some granules. Bedding dips 7°	- 30	1,211
but predominantly fine. Some granules present Sand, light greenish-gray, very fine to very coarse;	9	1,220
contains numerous granules		1,226
horizontalClay, greenish-gray, well-indurated, horizontally	8	1,234
laminar		1,236
contains some granules	2	
Sand, greenish-gray, silty, very fine, crossbedded Clay, greenish-gray, silty	4 1	1,242
very fine sand	3	1,246
a few pebbles	- 2	1,248 Continued

10/6-20MlContinued		Donath
Material	feet)	Depth (feet)
	(1000)	
Silt, greenish-gray, argillaceous, horizontally		
bedded. A couple of bands of clay grade into argillaceous silt within this unit	3	1,251
Sand, very light gray, very fine to very		
coarse, contains some granules. This		
unit becomes finer grained with increasing depth	1	1,252
Silt, greenish-gray, argillaceous, horizontally		2 0-1
thin bedded; contains some very fine sand	2	1,254
Sand, greenish-gray to very light gray, argillaceous,		
very fine with distorted bedding. A thin layer of	. 2	1,256
fine to very coarse sand is present at 1,256 feet Silt, greenish-gray, argillaceous, horizontally	_	-,,-
thin bedded; contains some very fine sand	. 2	1,258
Sand, greenish-gray, silty, very fine to fine		1258.5
Silt and clay, greenish-gray, horizontally		
thin bedded, argillaceous silt and silty clay	9.5	1,268
Silt, greenish-gray, argillaceous, massive; contains		
some very fine sand	1	1,269
Sand, greenish-gray, slightly calcareous, very	2	1,271
fine to coarse	1	1,272
Sand, greenish-gray, slightly calcareous, very	_	-,-,-
fine to very coarse; contains numerous granules.		
The sand becomes finer with increasing depth	8	1,280
Silt, dark greenish-gray, argillaceous, arenaceous	2	1,282
Sand, greenish-gray, calcareous, very fine to very		
coarse; contains some granules	20	.1,302
Sand, greenish-gray to yellowish-gray, calcareous,		
silty, very fine; contains a few layers of coarser sand and granules	7	1,309
Sand, yellowish-gray, slightly calcareous, well-	1	1,500
cemented, very fine to coarse	3	1,312
Cobbles and pebbles, quartz monzonite. Poor		_,
core recovery	2	1,314
Sand, greenish-gray to yellowish-gray, very		
fine to coarse	22	1,336
Sand, greenish-gray, slightly calcareous,		
very fine to very coarse; contains numerous granules and a few pebbles	4	1,340
Silt, greenish-gray, slightly calcareous,	**	1,540
argillaceous, crossbedded; contains some		
very fine sand. Bedding is horizontal	11	1,351
Sand, very light-gray calcareous,		,,,,,,
very fine to very coarse		1,352
Sand, greenish-gray, very fine to medium	2	1,354
Sand, greenish-gray, slightly calcareous, very		3 256
fine to very coarse; contains numerous granules	2	1,356
Sand, greenish-gray, calcareous, very fine, thin bedded	3	1,359
Clay, greenish-gray, silty	_	
	Continued	

10/6-20Ml.--Continued

Material	Thickness (feet)	Depth (feet)
Silt, greenish-gray, slightly calcareous, argillaceous,		
arenaceous	2	1,363
S'nd, greenish-gray, slightly calcareous, contains much very fine sand	5	1,363.5
Silt, greenish-gray, slightly calcareous, contains	Ī	
much very fine sand		1,364.5 1,365
Sand, greenish-gray, very fine to medium	• • • • • • • • • • • • • • • • • • • •	1,500
fine to medium; contains a few thin beds of silt	4	1,369
Sand, greenish-gray, calcareous, silty, very fine to very coarse	5	1,374
Sand, light olive-gray, slightly calcareous, very		-,51
fine to very coarse; contains numerous granules	2.2	3 205
and a few pebbles		1,385 1,387
Sand, greenish-gray, calcareous, silty, very fine to	_	-,5-1
very coarse; contains scattered granules and a few	(1 202
thin horizontal beds of silt	6	1,393
very coarse; contains numerous granules and a		
few pebbles	7	1,400
Sand, light olive-gray, calcareous, silty, very fine to very coarse, but predominantly fine and		
medium. A quartz monzonite cobble is present at		- 1
1,404 feet and a thin silt layer occurs at 1,415 ft - Sand, light olive-gray, slightly calcareous, very fine	22	1,422
to very coarse; contains some granules and a few		
pebbles		1,431
Sand, greenish-gray, calcareous, silty, very fine Sand, light olive-gray, very fine to very coarse;	5	1,436
contains numerous granules and some pebbles	1	1,437
Sand, greenish-gray, calcareous, silty, very fine to		2 1/62
medium, alternating massive and thin bedsSand, greenish-gray, calcareous, silty, very fine to	26	1,463
medium, alternating massive and thin beds	20	1,483
Sand, greenish-gray, calcareous, very fine to		
very coarse; contains numerous granules and a few pebbles. A quartz monzonite cobble is present		
at 1,483 feet	15	
Sand; same as that at 1,483 feet	15	1,513
Sand, greenish-gray to light olive-gray, calcareous, very fine to very coarse, but predominantly fine		
and medium. A couple of quartz monzonite pebbles		
are present at 1,525 feet	20	1,533
Sand, greenish-gray to light olive-gray, slightly calcareous, silty, very fine to very coarse;		
contains numerous granules and some pebbles	28	1,561

10/6-20M2 (SFC-1). U. S. Air Force. Altitude about 2,700 feet.

Not perforated. Test well for borate mineral	Not	perforated.	Test	well	for	borate	minerals
--	-----	-------------	------	------	-----	--------	----------

Material	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	· · · · · · · · · · · · · · · · · · ·	Thickness (feet)	Depth (feet)
Sand and gravel			128	128
Conglomerate, gray, with cobbles granitic rocks in matrix of gray Sand, fine to coarse, gray, arkosi	y arkosic sand	_1	1,023	1,151
pebbly, with some parting of cla	y; dips zero to	50	1,424	2,575
Sand, as above, with some interbed siltstone, greenish clay. Beddi	ng horizontal -		310	2,885
Sand and sandstone, fine to medium arkosic, with clay; dips zero to Sandstone, gray friable, medium to	100		531	3,416
with some conglomerate of granit cobbles			. 84	3,500

11/6-31-1.	G. K. Hogan	and J.	DeFon.	Altitude	about	2,450	feet.
11 a 2 h IT TT	T 1 2016	17.33	3	. 3			7

brilled by H. H. Ley in 1940. Well destroyed.	
"Hardpan"	. 43 . 43
Soil, sandy clay	28 71
Sand, approximately 60 percent; clay, approximately	·
40 percent	2 : 73
Fine sand and clay	27 100
Clay containing approximately 5 percent coarse sand	. 3 .103
"Hard rib"	2 105
Sandy clay	19 124
"Hard rib"	1 125
Clay and fine sand	22 147
Sandy clay	43 190
Fine water sand, small amount of water	2 192
Sandy clay	8 200
Coarse sand and clay	. ; 4 ; 204
Sandy clay	16 220

Table 7 .-- Chemical analyses of waters from wells

Constituents: The sum of determined constituents is the sum of the tabulated constituents minus approximately half (50.8 percent) of the bicarbonate. Because all of the commonly occurring major constituents (except silica in many of the analyses) were analytically determined, the values for dissolved solids and sum of determined constituents should be approximately the same. All values have been rounded where necessary to conform to the standards of the Geological Survey. Numbers in parentheses are values calculated by the Geological Survey, Ground Water Branch.

Analyzing laboratory: Bc Babcock and Sons, Riverside, Calif.; DA U. S.

Department of Agriculture, Rubidoux Laboratory, Riverside, Calif.;

DWR State of California, Department of Water Resources, GS U. S.

Geological Survey (Thompson, 1929), F San Bernardino County Flood Control District.

Well number	6/4-19F1	6/4-19J2	6/4-19P1
Constituents in parts per millio	n		
Silica (SiO ₂) Iron (Fe)	20		0.8
Calcium (Ca) Magnesium (Mg) Sodium (Na) Potassium (K)	60 12 a48	44 10 46 1.7	30 8 94
Bicarbonate (HCO ₃) Carbonate (CO ₃) Sulfate (SO ₄) ³ Chloride (C1)	174 0 107 36	205 0 38 32	183 0 100 36
Fluoride (F) Nitrate (NO ₃) Boron (B)		.7 0 0	0
Dissolved solids (Dis. S) Sum of determined constituents Hardness as CaCO ₃	(370) (199)	298 (273) 150	(359) 108
Percent sodium (%Na) Specific conductance (micromhos at 77°F)	3 ⁴ 619	39 506	2 572
pH (OD)		7.2	7.3
Temperature (°F) Date collected (Date) Depth of well in feet (Depth) Analyzing laboratory and number (Lab., No.)	8-30-54 100 Bc-540820A	70 F-2548	6-20-56 100 Bc-560621C
a. Includes potassiu	ım.		

Well number	6/4-19R3	6/	4-19R4	6/4-24J1	6/4-26Bl
Constituents :	in parts per	million			
Fe				0	0
Ca Mg Na K	40 7.6 a32	31 9.6 (a39)	68 11 59 1.6	55 9 60 .8	41 10 84 1.6
HCO ₃ CO ₃ SO ₄ C1	159 0 18 36	172 0 27 22	177 0 88 80	142 0 127 26	95 0 167 42
F NO3 B	.6 •5 •05		.7 7.9 .17	2.4	3.2 9.5 .40
Dis. S Sum Hardness	263 (213) 131	(214) 114	444 (403) (215)	417 (350) 174	442 (406) 143
%Na· Micromhos pH Date Depth Lab., No.	35 370 8.2 4-15-52 55 F-2147	7.3 4-8-42 48 F-10A	37 685 7.2 8-7-57 GS-R1651	43 618 7.8 9-2-55 190 F-3661	56 695 7.7 9-2-55 F-3660
Well number		6/4-29M4	,	6/4-29M6	6/4-29M7
Fe	<u> </u>			0.1	1.0
Ca Mg Na	22 7.9 (a32)	20 13 (a28)	30 11 a32	45 12 a37	36 11 a90
HCO ₃ CO ₃ SO ₁₄ C1	130 0 23 19	140 0 23 18	133 0 20 18	180 0 45 32	183 Trace 130 21
NO _B			22 .13	0	0
Sum Hardness	(168) 89	(171) 105	(199) 118	(260) 160	(379) 136
kNa Micromhos oH Date	(44) 7.6 4-8-42	(36) 319 7.6 6-29-42	(37) 325 7.2 9 - 21 - 52	33 452 7.6 6-20-56	59 589 7.1 6-20-56
Depth	F-9A	F-9B	F-9C	74 Bc-560621D	53 Bc-5606211

Well number		6/4-30C1	:	6/4-30D2	6/4-30D4
Constituents i	n parts per	million			
Ca Mg Na K	33 9.7 (a75)	41 6.9 (a80)	24 3.9 a62	31 7.0 57 1.4	25 6 50 1.5
нсо ₃ со ₃ so ₄ сı	155 0 132 21	168 0 133 20	106 0 97 9	94 0 126 13	144 9 39 23
F NO ₃ B			11	•5 4•5 0	.6 1.5 .02
Dis. S Sum Hardness	(347) 123	(364)	(259) 76	298 (286) 104	2 ¹ +1 (22 ¹ 7) 07
%Na Micromhos pH Date	(55) 7.3 4-8-42	(57) 606 7.0 6-29-42	(64) 441 7.2 9-21-42	487 6.8 4-3-57	55 344 8.4 6-19-52
Depth Lab., No.	50 F-30A	F-30B	F-30C	40 F-4058	F-2196
Well number	6/4-30G1	6/4-30Kl	6/4-30K2	6/4-30P2	6/4-32D8
SiO ₂ Fe	17 0	17 .01	17 •32		
Ca Mg Na K	31 4.8 51 1.9	33 6.7 45 1.8	24 5.4 56 1.9	29 8 47 2.9	13 4 29 1.2
нсо ₃ со ₃ so ₄ сı	167 0 41 20	177 0 33 22	171 44 14	171 5 33 19	107 6 6 9
F NO ₃	.8	.8	.8	.6	•5 4
B 3	.14	.13	.05	0	0
Dis.S Sum Hardness	.14 250 (250) 97	.13 247 (247) 110	249 (250) 82	251 (232) 103	0 145 (125) 51
Dis.S Sum	.14 250 (250)	.13 247 (247)	249 (250)	251 (232)	0 1 ¹ 45 (125)

Well number			6/4-32G3		
Constituents i	in parts per	million 25 0	20	22	
Ca Mg Na K	28 7 33 2.2	28 7 36 2.1	36 10 43 2.1	27 10 41 2.3	24 2 37 1.2
HCO ₃ CO ₃ SO ₁ C1	134 0 14 18	146 0 11 18	166 0 17 33	146 0 20 33	128 0 7 16
F NO B	.4 27 .02	.04 23	31 .06	.4 21 .06	.3 16 .02
Dis. S Sum Hardness	180 (196) 99	210 (223) (99)	265 (275) (131)	228 (249) (109)	183 (167) (68)
%Na Micromhos	42 320	(44) 354	(41) 441	(44) 375 7.8 12-20-56	54 293 7•9
pH Date Lab., No.	7.7 11-9-54 DWR-5006	7.8 5-5-55 DWR-5701	7.6 5-3-56 DWR-6973	12-20-56 DWR-T5482	7-11-57 DWR-R1648
pH Date	7.7 11-9-54	5-5-55 DWR-5701	5-3-56		7-11-57
pH Date Lab., No.	7.7 11-9-54 DWR-5006	5-5-55 DWR-5701	5-3-56 DWR-6973	DWR-15482	7-11-57 DWR-R1648
pH Date Lab., No. Well number	7.7 11-9-54 DWR-5006	5-5-55 DWR-5701	5-3-56 DWR-6973	DWR-T5482 6/4-34M2	7-11-57 DWR-R1648 6/4-34M3
pH Date Lab., No. Well number: Fe Ca Mg Na	11-9-54 DWR-5006 6/4-32	5-5-55 DWR-5701 2G4 30 8 37	5-3-56 DWR-6973 6/4-33R1: 0 70 17 50	DWR-T5482 6/4-34M2: 0 56 12 46	7-11-57 DWR-R1648 6/4-34M3 0 57 13 184
PH Date Lab., No. Well number: Fe Ca Mg Na K HCO3 CO3 SOI4	12 3.2 (a30)	30 8 37 2.8 159 0 16	5-3-56 DWR-6973 6/4-33R1: 0 70 17 50 1.0	0 56 12 46 1.0 122 0	7-11-57 DWR-R1648 6/4-34M3 0 57 13 184 2.0 356 5 175
PH Date Lab., No. Well number: Fe Ca Mg Na K HCO3 CO3 SO4 Cl F NO3 B Dis.S Sum Hardness	11-9-54 DWR-5006 6/4-32 12 3.2 (a30) 110 0 3.5 10	30 8 37 2.8 159 0 16 19 .4 31 0	5-3-56 DWR-6973 6/4-33R1: 0 70 17 50 1.0 193 0 101 57 .8 2.5 .12 415 (394) 242	0 56 12 46 1.0 122 0 100 60 .8 0 .08	7-11-57 DWR-R1648 6/4-34M3 0 57 13 184 2.0 356 5 175 77 .8 .5 .54
PH Date Lab., No. Well number: Fe Ca Mg Na K HCO3 CO3 SO4 C1 F NO3 B Dis.S Sum	12 3.2 (a30) 110 0 3.5	30 8 37 2.8 159 0 16 19 .4 31 0	5-3-56 DWR-6973 6/4-33R1: 0 70 17 50 1.0 193 0 101 57 .8 2.5 .12	0 56 12 46 1.0 122 0 100 60	7-11-57 DWR-R1648 6/4-34M3 0 57 13 184 2.0 356 5 175 77

Well number	6/4-34M4	6/4-34M5	6/4-34M6	6/4-34N2	6/4-34N3
Constituents i	in parts per	million O		0	0
Ca	156	156	162	58	38
Mg	31	31	33	14	10
Na	92	86	72	42	28
K	1.6	1.7	2.0	.8	1.0
HCO ₃	322	327	276	161	110
CO ₃	0	0	0	0	0
SO ₄	257	246	249	94	57
C1	122	118	135	44	31
F	.6	.8	.6	.8	.6
NO	1.5	2.0	o	.5	2.5
B 3	0	.26	.03	.1	.08
Dis. S	906	868	983	366	265
Sum	(821)	(803)	(790)	(33 3)	(222)
Hardness	515	517	541	205	134
%Na Micromhos pH Date Depth Lab., No.	27 1,350 7.0 9-2-55 50 F-3664	27 1,330 7.2 9-2-55 50 F-3669	22 1,340 6.9 9-2-55 52 F-3665	31 591 7.7 9-2-55 F-3670	31 402 7.4 9-2-55 62 F-3658
Well number	6/4-34N4	6/4-34N6	6/4-34N7	6/4-34P1	6/4-34P2
Fe	0	0	0	0	0
Ca	62	78	80	40	105
Mg	14	18	20	8	25
Na	34	110	126	56	98
K	1.7	2.7	2.4	1.5	2.0
HCO ₃ CO ₃ SO ₄ C1	154	300	232	149	246
	0	0	0	0	0
	93	149	199	63	232
	47	79	114	45	95
F	.3	.6	.6	1.0	.6
NO	3.0	1.0	3.5	4.0	0
B	0	.3 ¹ 4	.2	.1	.08
Dis. S	376	633	697	304	738
Sum	(331)	(587)	(660)	(292)	(679)
Hardness	216	271	284	130	365
%Na Micromhos pH Date Depth Lab., No.	25 591 7.3 9-2-55 100 F-3656	47 1,020 7.3 9-2-55 F-3657	49 1,140 7.8 9-2-55 50 F-3679	48 521 7.5 9-2-55 108.9 F-3680	37 1,130 6.9 9-2-55 86 F-3681

Well number	:	6/5-8F1	•	6	5/5 - 28 F 2	
Constituents SiO ₂ Fe	in parts	per millio	on .	34	10 •3	
Ca Mg Na K	5.2 3.6 a84	14 1.6 85 .8	8 3 85 1.6	13 3.6 78 5.9	84 24 a124	104 27 125 4.9
HCO CO ₃ 3 SO4 C1	123 0 101 4.5	128 0 108 8.5	85 22 107 2	130 85	181 0 257 90	244 0 259 97
F NO ₃		·5 2.5	1.5	37 .06	0 45 .1	.4 73 .2
Dis. S Sum Hardness %Na Micromhos pH Date Depth Lab., No.	(259) 28 (87) 451 8.2 9-21-42 90 F-29A	300 (284) (42) (84) 467 7.4 3-12-54 GS-P476	298 (272) 30 (84) 443 8.6 4-1-54	(387) (47) (75)	751 (723) 308 (47) 1,120 7.8 1-9-50	866 (810) 372 42 126 7.8 4-1-54
	1-29A	0) +1-60	F-3089	DA-6910	F-1221	F-3088
Well number	1-C7A	6/5-28F3	:		/5-29H1	F-3008
	1 - C/N		•			r-3000
Well number	(11) 4.0 (79)		:		/5-29Hl 14	8 1 80 2.0
Well number SiO ₂ Fe Ca Mg Na	(11) 4.0	6/5-28F3 4.4 3.2	10 20 1.1	19 8.5	/5-29H1 14 .5 8.8 4.7	8 1 80
Well number SiO2 Fe Ca Mg Na K HCO3 CO3 SO4	(11) 4.0 (79) 90 0	6/5-28F3 4.4 3.2 a85 87 0 123	20 1.1 a75 102 0	19 8.5 a87 103 0 94	/5-29H1 14 .5 8.8 4.7 a81	8 1 80 2.0 88 0
Well number SiO2 Fe Ca Mg Na K HCO3 CO3 SO4 Cl F NO3 B Dis. S Sum Hardness	(11) 4.0 (79) 90 0 127 7.3	6/5-28F3 4.4 3.2 a85 87 0 123 10 9.2 181 (278) 24	10 20 1.1 a75 102 0 120 12 10 258 (298) 55	19 8.5 a87 103 0 94 40	/5-29H1 14 .5 8.8 4.7 a81 93 1.2 119 11	8 1 80 2.0 88 0 126 3
Well number SiO ₂ Fe Ca Mg Na K HCO ₃ CO ₃ SO ₄ Cl F NO ₃ B Dis. S Sum	(11) 4.0 (79) 90 0 127 7.3	6/5-28F3 4.4 3.2 a85 87 0 123 10 9.2 181 (278)	10 20 1.1 a75 102 0 120 12 10 258 (298)	19 8.5 887 103 0 94 40 3.2 0	/5-29H1 14 .5 8.8 4.7 a81 93 1.2 119 11 0 0 .04 281 (286)	8 1 80 2.0 88 0 126 3

Well number	6/5	-29J1	7/4-6A1	7/4-6н2	7/4-60	15
Constituents SiO ₂ Fe	in parts]	per millio	on	8	19	
Ca Mg Na K	14 9.8 5.9 1.5	8 1 80 2	21 3.1 113 2.9	75 15 a190	82 11 a78	128 24 140 2.9
HCO ₃ CO ₃ SO ₁₄ C1	146 0 50 19	72 126 3	203 0 82 43	415 0 192 59	285 0 109 70	417 0 211 113
F NO ₃	.5 3 .16	.5 .1	1.6 0 .43	17	0 5.7 .15	.6 15 .6
Dis. S Sum Hardness	230 (176) 76	283 (256) 24	383 (367) 64	696 (761) 250	542 (515) 252	861 (840) 417
%Na Micromhos pH Date	63 396 7.9 6-2-53 190	(87) 8.2 4-1-57	78 615 8.0 1-21-54	(62) 1,171 6.7 6-24-45	40 725 7.8 1-9-50	42 1,340 7.4 1-21-54
veptn	190					
Depth Lab., No.	F-2675	F	F-2975	F-319	F-1224	F-2964
		F	F-2975 7/4-61			F-2964
Lab., No.		22 .1				0.8
Well number		22		P1 2.8		0.8
SiO ₂ Fe Ca Mg		22 .1 59 16		2.8 9.2 59 19		0.8 ,4 58 12
Lab., No. Well number SiO2 Fe Ca Mg Na HCO CO3 SO4		22 .1 59 16 a82 240 0		2.8 9.2 59 19 a73 224 0		0.8 .46 58 12 a71 217 0
Lab., No. Well number SiO2 Fe Ca Mg Na HCO CO 3 SO4 Cl F		22 .1 59 16 a82 240 0 129 38		2.8 9.2 59 19 a73 224 0 132 46		0.8 .4 58 12 a71 217 0 133 46
Lab., No. Well number SiO2 Fe Ca Mg Na HCO CO 3 SO4 Cl F NO3 B Dis. S Sum		22 .1 59 16 a82 240 0 129 38 .1 .2 .5		2.8 9.2 59 19 a73 224 0 132 46 .4 4.7 .21		0.8 ,4 58 12 a71 217 0 133 46 .5 3.1 .2: 483 (432)

Well number	;		7/4-7	Cl		
Constituents		per milli	on		25	
SiO ₂ Fe	8 •3	.05			25 0	
Ca Mg Na K	70 13 139	68 15 103	132 27 118 4.1	76 15 66 2.2	74 14 68 2.0	51 3 44 2.5
HCO CO3 SO ₁₄ C1	376 0 122 41	320 0 143 55	288 0 362 . 59	259 0 129 41	229 0 135 40	220 0 33 21
F NO B	18	5.7 .15	.8 .5 .35	.7 1.0 .18	.7 1.0 .14	.5 3.0 .13
Dis. S Sum Hardness	543 (596) 227	592 (548) 231	900 (846) 443	445 (459) (252)	460 (473) (242)	299 (266) (140)
%Na Micromhos oH oF	(57) 922 6.6	(49) 901 7.3	36 1,280 7.2	36 758 7.4 62	(38) 741 7.1	40 492 7.7
Date Lab., No.	6-24-45 F-320	12-27-49 F-1213	1-21-54 F-2962	10-28-54 GS-5020	59 5-5-55 GS-5689	7-10-57 DWR-R1653
Well number	7/4-	7C3	7/4-7KL		7/4-31E1	
SiO ₂	10 ,2		2 [†]	0	25 0	
Ca Mg Na K	50 9,9 a69	40 11 45 1.8	120 20 a162	107 16 66 2.2	93 10 53 1.8	
HCO CO ₃ 3 SO ₄ C1	229 0 56 28	178 0 54 31	390 0 216 123	307 0 141 59	290 0 84 43	214 0 39
F NO ₃	33.06	o.7 0.16	1.0	3.0 .14	0.8	
Dis. S Sum Hardness	324 (369) 166	258 (272) 145	913 (868) 381	540 (546) 334	450 (45 ⁴) (273)	(144) 173
Na Micromhos H F	(48) 559 6.6	40 462 7.5	48 1,250 7.1	30 833 7.4 70	(30) 678 7•3	612 7.5 63
£ 2		2 02 54	2-27-52	11-9-54	5 - 5 - 55	7-21-57
r Date Depth Ab., No.	6-24-45 100 F-321	1-21-54 F-2963	210 F-2010	90 DWR-5011	DWR-5698	DWR-R161 ¹

Well number	number 7/4-31Ml		7/4-	31P1	7/5-	36Q1
Constituent	s in parts	per millio	on			
Si0 ₂	13	17				
Ca Mg Na K	54 10 63 2.3	60 11 66 2.3	96 20 50 1.8	95 16 54 2.5	34 7.1 a33	40 9.8 32 2
HCO ₃ CO ₃ SO ₄ C1	220 0 52 55	254 0 69 50	312 0 104 42	303 0 111 47	144 0 40 26	198 0 23 23
F NO ₃ B	.7 0 .02	1.5 0 .05	.5 o .11	.6 .5 .14	.6	.6 0 .03
Dis. S Sum Hardness	384 (358) 176	478 (401) (195)	493 (468) 320	493 (476) 302	243 (212) 114	255 (228) 140
%Na Micromhos	(43) 570 8.0	(42) 686 7.6	25 797 7 . 2	28 791 7•5	39 340 7•7	33 416 7.2
pH Date	1-14-57	7-10-57		1-21-54		1-53-73
~		7-10-57	131 F-2453	1-21-54 F-2961	4-11-52 65 F-2074	F-2483
Date Depth	1-14-57 44.4	7-10-57 DWR-T929			65	F-2483
Date Depth Lab., No.	1-14-57 44.4 DWR-T5700	7-10-57 DWR-T929	F-2453		65 F- 2074	F-2483
Date Depth Lab., No. Well number Si02	1-14-57 44.4 DWR-T5700	7-10-57 DWR-T929 : :	F-2453		65 F- 2074	
Date Depth Lab., No. Well number SiO2 Fe Ca Mg Na	1-14-57 44.4 DWR-T5700 : 8/4-17Q2 52 7.9 250	7-10-57 DWR-T929 : : : 28 0 94 12	F-2453 8/4-19J3 135 28 175	F-2961 :: 208 30 210	65 F-2074 8/4-19 99 18 164	F-2483 PR1 115 17 170
Date Depth Lab., No. Well number SiO2 Fe Ca Mg Na K HCO3 CO SO4	1-14-57 44.4 DWR-T5700 : 8/4-17Q2 : 8/4-17Q2 52 7.9 250 2.5 298 0 221	7-10-57 DWR-T929 : : : 28 0 94 12 a148 289 0 169	F-2453 8/4-19J3 135 28 175 4.7 281 0 286	F-2961 :: 208 30 210 4.9 254 0 369	99 18 164 3.1 290 0 228	F-2483 PR1 115 17 170 4.1 285 0 321
Date Depth Lab., No. Well number SiO2 Fe Ca Mg Na K HCO3 CO SO3 SO4 C1 F NO3 B Dis. S Sum Hardness	1-14-57 44.4 DWR-T5700 : 8/4-17Q2 : 8/4-17Q2 52 7.9 250 2.5 298 0 221 141 .8 4.5	7-10-57 DWR-T929 : : : 28 0 94 12 a148 289 0 169 134 .5 7.4	F-2453 8/4-19J3 135 28 175 4.7 281 0 286 220 .6 10	F-2961 :: 208 30 210 4.9 254 0 369 377 .4	99 18 164 3.1 290 0 228 119 .8 2.0	F-2483 PR1 115 17 170 4.1 285 0 321 126 .6 6.0
Date Depth Lab., No. Well number SiO2 Fe Ca Mg Na K HCO3 CO SO4 C1 F NO3 B Dis. S Sum	1-14-57 44.4 DWR-T5700 : 8/4-1792 : 8/4-1792 52 7.9 250 2.5 298 0 221 141 .8 4.5 .64 836 (827)	7-10-57 DWR-T929 : : : 28 0 94 12 a148 289 0 169 134 .5 7.4 .41 759 (735)	F-2453 8/4-19J3 135 28 175 4.7 281 0 286 220 .6 10 .51 1,050 (998)	F-2961 208 30 210 4.9 254 0 369 377 .4 13 .71 1,480 (1,340)	99 18 164 3.1 290 0 228 119 .8 2.0 .29	F-2483 PR1 115 17 170 4.1 285 0 321 126 6.0 67 954 (900)

Well number	8/4-	·20A1	8/4-20B1	1	.8/4-20G2	
Constituent	s in parts	per millio	on			
SiO ₂	17	21				
Ca Mg Na K	142 24 286 3.1	136 28 320 4.2	90 11 190 2.6	122 22 135 3		
HCO ₃ CO ₃ SO ₁₄ C1	374 0 338 300	390 0 381 335	267 11 207 169	297 0 202 159	300 0 232 193	
F NO3 B	1.2 3.5 .36	2.4 4.5 .65	.6 3.0 .62	4.	.5 4	.6 .52
Dis. S Sum Hardness	1,340 (1,300) (453)	1,580 (1,430) 455	871 (817) 42	870 (79 5 289) (897 338)
%Na Micromhos pH	(58) 2,030 7.5	(60) 2,310 7.4	60 1,230 8.0		.6 7	.6
Date Depth Lab., No.	1-14-57 25 DWR-T5701	7-10-57 DWR-T920	10-10-55 40 F-3759	3-9-5 60 F-255		
2001, 1101	2011-17101	DW11-1920	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1-0)	,, , , , , , , , , , , , , , , , , , , ,	
Well number	8/4	-20N1 .	8/4-20N2	8/4-20P1	8/4-20P2	8/4-20P3
Ca Mg Na K	270 42 235 4.8	339 54 230 5•2	159 23 125 3.1	631 90 400 7.6	84 18 93 3.0	422 39 180 5.6
HCO ₃ CO ₃ SO ₄ C1	398 0 453 355	481 0 609 395	266 0 251 189	242 0 1,170 975	124 0 163 158	195 0 338 772
F NO ₃	.7 23 .38	.8 7.0 .60	.7 10 .28	.6 4.5 .34	.6 2.5 .22	16 ³ .23
Dis. S Sum Hardness	1,710 (1,580) 846	2,090 (1,880) 1,070	951 (892) 493	3,900 (3,400) 1,950	681 (583) 282	3,110 (1,870) 1,210
%Na Micromhos pH Date	37 2,030 7.4 8-25-54	32 2,820 7.9 12-9-55	35 1,360 7.5 8-25-54	31 4,330 7.9 6-29-54	42 1,050 7.9 6-27-55	24 3,080 8.1 3-3-54
Depth Lab., No.	50 F-3240	F-3736	91 F-3239	65 F-3197	115 F-3615	F-3070

Well number	8/4-21F1	8/4-2	21F2	8/4-2902	8/4-30El	8/4-30F1
Constituents SiO Fe 2	in parts 30 0	per millio	on			
Ca Mg Na K	58 7 113 2.5	40 12 105 2.2	70 14 115 2.5	169 27 205 4.5	56 4 180 2.8	233 9.2 460 5
HCO CO ₃ 3 SO ₄ C1	232 0 122 67	224 0 126 37	246 0 164 76	268 0 360 265	150 5 183 . 170	100 0 430 801
F NO ₃	1 0 .24	1.2 1 .19	.9 1 .24	.9 8.9 .38	.6 1.5 .44	.8 22 .01
Dis. S Sum Hardness	515 (515) (173)	473 (435) (149)	555 (565) (232)	1,250 (1,180) 535	731 (67 7) 155	2,200 (2,010) 619
%Na Micromhos pH OF	(58) 743 7•7 71	(60) 779 8.1	(52) 862 7.5 72	45 1,870 7.5	71 1,200 8.2	62 3,320 7.8
Date Depth Lab., No.	5-5-55 180 DWR-5682	5-4-53 50 F-2663	11-9-54 DWR-5009	7-10-53 F-2738	11-30-55 405 F-3756	7-18-52 364 F-2290
Well number		8/4-30G1	8/4-30H1	8/4-30N2	8/4-	-3001
SiO ₂ Fe					26 0	
Ca Mg Na K		78 8 168 3.0	116 17 180 3.2	183 11 5.0 5.9	92 21 174	164 32 150 4.3
HCO ₃ CO ₃ SO ₄ C1		188 0 269 119	254 3 330 140	102 0 443 729	296 0 239 63	181 0 614 63
F NO ₃		.9 2.0 .60	.8 1.5 .48	.9 3.0 .57	.9 1.5 .19	.8 o .08
Dis. S Sum Hardness		788 (742) 228	976 (917) 360	1,970 (1,430) 495	752 (764) 316	1,230 (1,120) 539
%Na Micromhos pH Date		61 1,110 7.8 11-30-55	52 1,370 8.0 11-30-55	68 3,180 7.7	47 1160 7.1 2-5-52	37 1,640 7.0 1-21-54
Depth Lab., No.		212 F-8755	55 F-375 7	59.5 F-2547	F-1987	F-2967

ell number		8/4-3	31 D1	8/4-31J1	
Constituents in pa SiO ₂ Fe	rts per millio	n 30 0			
Ca Mg Na K		3 ⁴ 8.5 al29	180 46 275 5•3	67 6.7 130 2.9	69 12 95 2.8
HCO ₃ CO ₃ SO ₄ C1		221 0 113 61	193 0 350 494	288 0 136 61	224 0 127 85
F NO ₃		·3 4.5 ·36	.2 9.9 .48	.9 1.7 ,26	.8 2.0 .20
Dis. S Sum Hardness		500 (490) 120	1,540 (1,460) 637	580 (549) 195	516 (504) 220
%Na Micromhos pH Date Depth		70 820 8.1 2-5-52	48 2,480 7.6 1-21-54	59 806 8.0 7-7-52 60	148 852 7.6 1-21-51
Lab., No.		F-1988	F-2968	F-2222	F-2966
Vell number	:		8/4-31Rl		
SiO ₂ Fe	22 0		30 0	30	
Ca Mg Na	46 5.8 a131	58 12 118	134 17 115	159 27	251 · 33
K		2.7	3.0	123 3.0	215 2.5
HCO ₃ CO ₃ SO ₁₄ C1	205 0 120 81	2.7 224 0 148 85			215 2.5 458 0 444 278
HCO ₂	0 120	224 0 148	3.0 325 0 203	3.0 376 240	2.5 458 0 444
HCO ₃ CO ₃ SO ₁₄ C1 F NO ₃ B Dis. S Sum Hardness	0 120 81 1.5 9.4	224 0 148 85 2.4 2.5	3.0 325 0 203 113 1.0 6.4	3.0 376 240 135 .8 11 .34	2.5 458 0 444 278
HCO ₃ CO ₃ SO ₁₄ C1 F NO ₃ B Dis. S Sum	0 120 81 1.5 9.4 .58 539 (518)	224 0 148 85 2.4 2.5 .67 596 (539)	3.0 325 0 203 113 1.0 6.4 .36 780 (783)	3.0 376 240 135 .8 11 .34 922 (914)	2.5 458 0 444 278 .5 13 .57 1,560 (1,470)

Well number	8/	4-32MI	8/4-32M4	8/4-32N2	8/5-21F1	
Constituent	s in parts	per milli	on			
Si02			25	ъ35		
Ca Mg Na K	197 27 140 4.0	218 28 172 4.5	85 10 a132	31 4.9 ¤73	45 9 214 2.5	
HCO ₃ CO ₃ SO ₄ C1	386 0 360 172	422 0 119 188	273 7 192 83	215 0 31 32	205 0 242 121	
F NO ₃ B	.9 2.0 .44	.9 2.5 .50	•9 •5 •20		32 .6	
Dis. S Sum Hardness	1,170 (1,100) 600	1,360 (941) 653	691 (670) 256	313 (313) 98	796 (767) (149)	
%Na Micromhos pH Date Depth	34 1,710 7.6 10-3-56	36 1,870 7.3 2-7-57	53 960 8.2 3-4-52	7-21-08 10	(75) 1,270 7.4 3-12-54 228	
Lab., No.	F-3980	F-4051	F-2028		DVR-P483	
Well number	8/5	5-25R1	9/6-34B1	10/6-	5E3	10/6 - 5E5
SiO ₂ Fe	22		5	57		20
Ca Mg Na K	51 2.2 202	97 6.1 260 5.2	22 6 315 6	43 13 426 3.0	44 11 430 4.5	41 17 a 379
HCO ₃ CO ₃ SO ₄ C1	156 0 199 150	137 0 281 302	138 311 244	304 11 318 335	302 0 · 321 333	293 13 302 287
F NO ₃ B	.1 2.0 .28	.7 5.0 .67	6.4 1 1	1.6 20 2.9	1.0 20 2.6	0
Dis. S Sum Hardness	708 (706) 136	1,050 (1,030) 268	(1,020)	1,360 1,380	1,300 1,320 153	1,360 1,210 175
%Na Micromhos pH	77 1,190 7.6	67 1,750 7.8	(89) 1,600 8.0	85 2,120 7.8	85 2,160 7.8	83
Date Depth Lab., No.	2-5-52 140 F-1989	1-21-54 F-2969	5-14-53 300 GS	4-17-53 440 GS	6-5-53 DWR-3108	258.8

a. Includes potassium.
b. Includes iron and aluminum oxides and silica.

SHOWING RECONNAISSANCE GEOLOGY AND LOCATIONS OF WELLS

CONTOUR INTERVAL 20, 25, AND 40 FEET

large part generalized from uppublished mapping by T W Dibblee, Jr and L. C. Quicher, and published mapping in the Barslaw quadrangle by D. E. Bowen, Jr. (1954), 1959

THIS BOOK IS DUE ON THE LAST DATE

RENEWED BOOKS ARE SUBJECT TO IMMEDIATE RECALL

JAN 5 1977 NOV 1 REUD

LIBRARY, UNIVERSITY OF CALIFORNIA, DAVIS

Book Slip-20m-8,'61 (C1623s4)458

Call Number:

200514
California. Dept. of C2

UNIVERSITY OF CALIFORNIA DAVIS

PHYSICAL SCIENCES LIBRARY

water resources.

Rulletin.

CEliber

TCE 4

A2

EIBRARY UNIVERSITY OF CALIFORNIA DAVIS

240514

